# Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import paddle.trainer.PyDataProvider2 as dp2 import collections import swig_paddle import numpy import itertools from functools import reduce __all__ = ['DataProviderConverter'] class IScanner(object): """ The scanner will scan Python object two passes, then convert it to Paddle's argument. In the first pass, `pre_scan` will be invoked by every data instance, and then invoke `finish_pre_scan` to arguments. And the second pass do the same thing except the functions changed to `scan`, `finish_scan`. During the first pass, a scanner may count the shape of input matrix and allocate memory for this argument. Then fill the data into this argument in second pass. """ def __init__(self, input_type, pos): self.input_type = input_type if not isinstance(self.input_type, dp2.InputType): raise ValueError("input type should be dataprovider2.InputType") self.pos = pos # data_in_gpu is used to indicate whether to create argument on GPU # or not in GPU mode. Now if using one thread (trainer_count=1), # trainer uses NeuralNetwork which needs to create argument on GPU # before calling forward function. So, set data_in_gpu to True. # Otherwise, trainer uses MultiGradientMachine which will transfer # data from CPU to GPU in the forward function, set data_in_gpu to # False in this case. self.data_in_gpu = swig_paddle.isUsingGpu( ) and swig_paddle.getTrainerCount() == 1 def pre_scan(self, dat): """ First pass scan method. During this method, the scanner could count the data number, and get the total memory size this batch would use. :param dat: The python object. """ pass def finish_pre_scan(self, argument): """ Finish first scan pass. Allocate the memory. :param argument: Output arguments object. :type argument: swig_paddle.Arguments :param dat: Output arguments object. :type dat: The Python object, numpy.array or List. :return: """ pass def scan(self, dat): """ Second pass scan method. Copy the data to arguments. :param dat: The python object. """ pass def finish_scan(self, argument): """ Finish second pass. Finalize the resources, etc. :param argument: Output arguments object. :type argument: swig_paddle.Arguments """ pass class DenseScanner(IScanner): """ :type __mat__: numpy.ndarray """ def __init__(self, input_type, pos): IScanner.__init__(self, input_type, pos) self.__mat__ = None self.__shape__ = None self.__height__ = 0 self.__dim__ = 0 def pre_scan(self, dat): self.__height__ += 1 if self.__shape__ is None: self.__shape__ = numpy.array(dat).shape if len(self.__shape__) > 3: raise ValueError( "The dimension of input cannot be greater than 3.") if len(self.__shape__) == 0: raise ValueError( "The input should be a vector, please check your input data." ) self.__dim__ = reduce(lambda x, y: x * y, self.__shape__) if len(self.__shape__) == 1 and self.__dim__ != self.input_type.dim: raise ValueError( "The data size must be equal to it in data layer.") else: if self.__shape__ != numpy.array(dat).shape: raise ValueError( "The data shape must be same in one mini-batch.") def finish_pre_scan(self, argument): self.__mat__ = numpy.ndarray( shape=(self.__height__, self.__dim__), dtype=numpy.float32) self.__height__ = 0 def scan(self, dat): # It's better to use NumPy array for speed. dat = numpy.array(dat) dat = dat.flatten() self.__mat__[self.__height__] = dat self.__height__ += 1 def finish_scan(self, argument): assert isinstance(argument, swig_paddle.Arguments) if self.__mat__.dtype != numpy.float32: self.__mat__ = self.__mat__.astype(numpy.float32) m = swig_paddle.Matrix.createDenseFromNumpy(self.__mat__, True, self.data_in_gpu) argument.setSlotValue(self.pos, m) if len(self.__shape__) > 1: # The last-two dimenstions are the frame height and width. # For example, the layout is CHW for 3-D feature of image. # The H and W are the fram height and width. h, w = self.__shape__[-2:] argument.setSlotFrameHeight(self.pos, h) argument.setSlotFrameWidth(self.pos, w) self.__shape__ = None class SparseBinaryScanner(IScanner): def __init__(self, input_type, pos): IScanner.__init__(self, input_type, pos) self.__rows__ = [0] self.__cols__ = [] self.__height__ = 0 self.__value__ = [] def scan(self, dat): self.extend_cols(dat) self.__rows__.append(len(self.__cols__)) self.__height__ += 1 def extend_cols(self, dat): self.__cols__.extend(dat) def finish_scan(self, argument): assert isinstance(argument, swig_paddle.Arguments) m = swig_paddle.Matrix.createSparse( self.__height__, self.input_type.dim, len(self.__cols__), len(self.__value__) == 0, False, # trans False) # TODO supoort GPU assert isinstance(m, swig_paddle.Matrix) m.sparseCopyFrom(self.__rows__, self.__cols__, self.__value__) argument.setSlotValue(self.pos, m) class SparseFloatScanner(SparseBinaryScanner): def __init__(self, input_type, pos): SparseBinaryScanner.__init__(self, input_type, pos) def extend_cols(self, dat): self.__cols__.extend((x[0] for x in dat)) self.__value__.extend((x[1] for x in dat)) class IndexScanner(IScanner): def __init__(self, input_type, pos): IScanner.__init__(self, input_type, pos) self.__ids__ = None self.__idx__ = 0 def pre_scan(self, dat): self.__idx__ += 1 def finish_pre_scan(self, argument): self.__ids__ = [0] * self.__idx__ self.__idx__ = 0 def scan(self, dat): self.__ids__[self.__idx__] = dat self.__idx__ += 1 def finish_scan(self, argument): ids = swig_paddle.IVector.create(self.__ids__, self.data_in_gpu) assert isinstance(argument, swig_paddle.Arguments) argument.setSlotIds(self.pos, ids) class SequenceScanner(IScanner): def __init__(self, input_type, pos, inner_scanner, setter): IScanner.__init__(self, input_type, pos) self.__seq__ = [0] self.__inner_scanner__ = inner_scanner self.__setter__ = setter def pre_scan(self, dat): for each in dat: self.__inner_scanner__.pre_scan(each) def finish_pre_scan(self, argument): self.__inner_scanner__.finish_pre_scan(argument) def scan(self, dat): self.__seq__.append(self.__seq__[-1] + self.get_size(dat)) for each in dat: self.__inner_scanner__.scan(each) def finish_scan(self, argument): seq = swig_paddle.IVector.create(self.__seq__, False) self.__setter__(argument, self.pos, seq) self.__inner_scanner__.finish_scan(argument) def get_size(self, dat): if isinstance(self.__inner_scanner__, SequenceScanner): return sum(self.__inner_scanner__.get_size(item) for item in dat) else: return len(dat) class DataProviderConverter(object): def __init__(self, input_types): self.input_types = input_types assert isinstance(self.input_types, collections.Sequence) for each in self.input_types: assert isinstance(each, dp2.InputType) def convert(self, dat, argument=None): if argument is None: argument = swig_paddle.Arguments.createArguments(0) assert isinstance(argument, swig_paddle.Arguments) argument.resize(len(self.input_types)) scanners = [ DataProviderConverter.create_scanner(i, each_type) for i, each_type in enumerate(self.input_types) ] for each_sample in dat: for each_step, scanner in itertools.izip(each_sample, scanners): scanner.pre_scan(each_step) for scanner in scanners: scanner.finish_pre_scan(argument) for each_sample in dat: for each_step, scanner in itertools.izip(each_sample, scanners): scanner.scan(each_step) for scanner in scanners: scanner.finish_scan(argument) return argument def __call__(self, dat, argument=None): return self.convert(dat, argument) @staticmethod def create_scanner(i, each): assert isinstance(each, dp2.InputType) retv = None if each.type == dp2.DataType.Dense: retv = DenseScanner(each, i) elif each.type == dp2.DataType.Index: retv = IndexScanner(each, i) elif each.type == dp2.DataType.SparseNonValue: retv = SparseBinaryScanner(each, i) elif each.type == dp2.DataType.SparseValue: retv = SparseFloatScanner(each, i) assert retv is not None if each.seq_type == dp2.SequenceType.SUB_SEQUENCE: retv = SequenceScanner( each, i, retv, lambda a, p, seq: a.setSlotSubSequenceStartPositions(p, seq)) if each.seq_type in [ dp2.SequenceType.SUB_SEQUENCE, dp2.SequenceType.SEQUENCE ]: retv = SequenceScanner( each, i, retv, lambda a, p, seq: a.setSlotSequenceStartPositions(p, seq)) return retv