# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from __future__ import print_function import unittest import numpy as np import paddle.fluid as fluid import paddle.fluid.layers as layers import paddle.fluid.core as core import gradient_checker from decorator_helper import prog_scope class TestMulGradCheck(unittest.TestCase): @prog_scope() def func(self, place): prog = fluid.Program() with fluid.program_guard(prog): x = layers.create_parameter(dtype="float64", shape=[2, 8], name='x') y = layers.create_parameter(dtype="float64", shape=[8, 4], name='y') z = layers.mul(x=x, y=y) gradient_checker.grad_check([x, y], z, place=place) def test_grad(self): places = [fluid.CPUPlace()] if core.is_compiled_with_cuda(): places.append(fluid.CUDAPlace(0)) for p in places: self.func(p) class TestReduceMeanWithDimDoubleGradCheck(unittest.TestCase): @prog_scope() def func(self, place): shape = [7, 11] eps = 0.05 dtype = np.float64 x = layers.data('x', shape, False, dtype) x.persistable = True y = layers.reduce_mean(x, dim=0) x_arr = np.random.uniform(-1, 1, shape).astype(dtype) gradient_checker.double_grad_check( [x], y, x_init=x_arr, place=place, eps=eps) def test_grad(self): places = [fluid.CPUPlace()] if core.is_compiled_with_cuda(): places.append(fluid.CUDAPlace(0)) for p in places: self.func(p) class TestMulDoubleGradCheck(unittest.TestCase): @prog_scope() def func(self, place): # the shape of input variable should be clearly specified, not inlcude -1. x_shape = [7, 11] y_shape = [11, 9] eps = 0.005 dtype = np.float64 x = layers.data('x', x_shape, False, dtype) x.persistable = True y = layers.data('y', y_shape, False, dtype) y.persistable = True out = layers.mul(x, y) x_arr = np.random.uniform(-1, 1, x_shape).astype(dtype) y_arr = np.random.uniform(-1, 1, y_shape).astype(dtype) gradient_checker.double_grad_check( [x, y], out, x_init=[x_arr, y_arr], place=place, eps=eps) def test_grad(self): places = [fluid.CPUPlace()] if core.is_compiled_with_cuda(): places.append(fluid.CUDAPlace(0)) for p in places: self.func(p) class TestReshapeDoubleGradCheck(unittest.TestCase): @prog_scope() def func(self, place): x_shape = [3, 12] new_shape = [4, 9] eps = 0.005 dtype = np.float64 x = layers.data('x', x_shape, False, dtype) x.persistable = True out = layers.reshape(x, new_shape) x_arr = np.random.uniform(-1, 1, x_shape).astype(dtype) gradient_checker.double_grad_check( [x], out, x_init=x_arr, place=place, eps=eps) def test_grad(self): places = [fluid.CPUPlace()] if core.is_compiled_with_cuda(): places.append(fluid.CUDAPlace(0)) for p in places: self.func(p) if __name__ == "__main__": unittest.main()