# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from __future__ import print_function import numpy as np import argparse import time import math import os import sys import six import argparse import ast import multiprocessing import time from functools import partial from os.path import expanduser import glob import random import tarfile import paddle import paddle.fluid as fluid import paddle.fluid.layers as layers from paddle.fluid import core from test_dist_base import TestDistRunnerBase, runtime_main, RUN_STEP import paddle.compat as cpt from paddle.compat import long_type import hashlib const_para_attr = fluid.ParamAttr(initializer=fluid.initializer.Constant(0.001)) const_bias_attr = const_para_attr # Fix seed for test fluid.default_startup_program().random_seed = 1 fluid.default_main_program().random_seed = 1 #from transformer_config import ModelHyperParams, TrainTaskConfig, merge_cfg_from_list class TrainTaskConfig(object): # only support GPU currently use_gpu = True # the epoch number to train. pass_num = 1 # the number of sequences contained in a mini-batch. # deprecated, set batch_size in args. batch_size = 20 # the hyper parameters for Adam optimizer. # This static learning_rate will be multiplied to the LearningRateScheduler # derived learning rate the to get the final learning rate. learning_rate = 1 beta1 = 0.9 beta2 = 0.98 eps = 1e-9 # the parameters for learning rate scheduling. warmup_steps = 4000 # the weight used to mix up the ground-truth distribution and the fixed # uniform distribution in label smoothing when training. # Set this as zero if label smoothing is not wanted. label_smooth_eps = 0.1 # the directory for saving trained models. model_dir = "trained_models" # the directory for saving checkpoints. ckpt_dir = "trained_ckpts" # the directory for loading checkpoint. # If provided, continue training from the checkpoint. ckpt_path = None # the parameter to initialize the learning rate scheduler. # It should be provided if use checkpoints, since the checkpoint doesn't # include the training step counter currently. start_step = 0 check_acc = True data_path = expanduser("~") + ( "/.cache/paddle/dataset/test_dist_transformer/") src_vocab_fpath = data_path + "vocab.bpe.32000" trg_vocab_fpath = data_path + "vocab.bpe.32000" train_file_pattern = data_path + "train.tok.clean.bpe.32000.en-de" val_file_pattern = data_path + "newstest2013.tok.bpe.32000.en-de.cut" pool_size = 2000 sort_type = None local = True shuffle = False shuffle_batch = False special_token = ['', '', ''] token_delimiter = ' ' use_token_batch = False class InferTaskConfig(object): use_gpu = True # the number of examples in one run for sequence generation. batch_size = 10 # the parameters for beam search. beam_size = 5 max_out_len = 256 # the number of decoded sentences to output. n_best = 1 # the flags indicating whether to output the special tokens. output_bos = False output_eos = False output_unk = True # the directory for loading the trained model. model_path = "trained_models/pass_1.infer.model" class ModelHyperParams(object): # These following five vocabularies related configurations will be set # automatically according to the passed vocabulary path and special tokens. # size of source word dictionary. src_vocab_size = 10000 # size of target word dictionay trg_vocab_size = 10000 # index for token bos_idx = 0 # index for token eos_idx = 1 # index for token unk_idx = 2 # max length of sequences deciding the size of position encoding table. # Start from 1 and count start and end tokens in. max_length = 256 # the dimension for word embeddings, which is also the last dimension of # the input and output of multi-head attention, position-wise feed-forward # networks, encoder and decoder. d_model = 512 # size of the hidden layer in position-wise feed-forward networks. d_inner_hid = 2048 # the dimension that keys are projected to for dot-product attention. d_key = 64 # the dimension that values are projected to for dot-product attention. d_value = 64 # number of head used in multi-head attention. n_head = 8 # number of sub-layers to be stacked in the encoder and decoder. n_layer = 6 # dropout rate used by all dropout layers. dropout = 0.0 # no random # random seed used in dropout for CE. dropout_seed = None # the flag indicating whether to share embedding and softmax weights. # vocabularies in source and target should be same for weight sharing. weight_sharing = True def merge_cfg_from_list(cfg_list, g_cfgs): """ Set the above global configurations using the cfg_list. """ assert len(cfg_list) % 2 == 0 for key, value in zip(cfg_list[0::2], cfg_list[1::2]): for g_cfg in g_cfgs: if hasattr(g_cfg, key): try: value = eval(value) except Exception: # for file path pass setattr(g_cfg, key, value) break # The placeholder for batch_size in compile time. Must be -1 currently to be # consistent with some ops' infer-shape output in compile time, such as the # sequence_expand op used in beamsearch decoder. batch_size = -1 # The placeholder for squence length in compile time. seq_len = ModelHyperParams.max_length # Here list the data shapes and data types of all inputs. # The shapes here act as placeholder and are set to pass the infer-shape in # compile time. input_descs = { # The actual data shape of src_word is: # [batch_size * max_src_len_in_batch, 1] "src_word": [(batch_size, seq_len, long_type(1)), "int64", 2], # The actual data shape of src_pos is: # [batch_size * max_src_len_in_batch, 1] "src_pos": [(batch_size, seq_len, long_type(1)), "int64"], # This input is used to remove attention weights on paddings in the # encoder. # The actual data shape of src_slf_attn_bias is: # [batch_size, n_head, max_src_len_in_batch, max_src_len_in_batch] "src_slf_attn_bias": [(batch_size, ModelHyperParams.n_head, seq_len, seq_len), "float32"], # The actual data shape of trg_word is: # [batch_size * max_trg_len_in_batch, 1] "trg_word": [(batch_size, seq_len, long_type(1)), "int64", 2], # lod_level is only used in fast decoder. # The actual data shape of trg_pos is: # [batch_size * max_trg_len_in_batch, 1] "trg_pos": [(batch_size, seq_len, long_type(1)), "int64"], # This input is used to remove attention weights on paddings and # subsequent words in the decoder. # The actual data shape of trg_slf_attn_bias is: # [batch_size, n_head, max_trg_len_in_batch, max_trg_len_in_batch] "trg_slf_attn_bias": [(batch_size, ModelHyperParams.n_head, seq_len, seq_len), "float32"], # This input is used to remove attention weights on paddings of the source # input in the encoder-decoder attention. # The actual data shape of trg_src_attn_bias is: # [batch_size, n_head, max_trg_len_in_batch, max_src_len_in_batch] "trg_src_attn_bias": [(batch_size, ModelHyperParams.n_head, seq_len, seq_len), "float32"], # This input is used in independent decoder program for inference. # The actual data shape of enc_output is: # [batch_size, max_src_len_in_batch, d_model] "enc_output": [(batch_size, seq_len, ModelHyperParams.d_model), "float32"], # The actual data shape of label_word is: # [batch_size * max_trg_len_in_batch, 1] "lbl_word": [(batch_size * seq_len, long_type(1)), "int64"], # This input is used to mask out the loss of padding tokens. # The actual data shape of label_weight is: # [batch_size * max_trg_len_in_batch, 1] "lbl_weight": [(batch_size * seq_len, long_type(1)), "float32"], # These inputs are used to change the shape tensor in beam-search decoder. "trg_slf_attn_pre_softmax_shape_delta": [(long_type(2), ), "int32"], "trg_slf_attn_post_softmax_shape_delta": [(long_type(4), ), "int32"], "init_score": [(batch_size, long_type(1)), "float32"], } # Names of word embedding table which might be reused for weight sharing. word_emb_param_names = ( "src_word_emb_table", "trg_word_emb_table", ) # Names of position encoding table which will be initialized externally. pos_enc_param_names = ( "src_pos_enc_table", "trg_pos_enc_table", ) # separated inputs for different usages. encoder_data_input_fields = ( "src_word", "src_pos", "src_slf_attn_bias", ) decoder_data_input_fields = ( "trg_word", "trg_pos", "trg_slf_attn_bias", "trg_src_attn_bias", "enc_output", ) label_data_input_fields = ( "lbl_word", "lbl_weight", ) # In fast decoder, trg_pos (only containing the current time step) is generated # by ops and trg_slf_attn_bias is not needed. fast_decoder_data_input_fields = ( "trg_word", "init_score", "trg_src_attn_bias", ) # fast_decoder_util_input_fields = ( # "trg_slf_attn_pre_softmax_shape_delta", # "trg_slf_attn_post_softmax_shape_delta", ) #from optim import LearningRateScheduler class LearningRateScheduler(object): """ Wrapper for learning rate scheduling as described in the Transformer paper. LearningRateScheduler adapts the learning rate externally and the adapted learning rate will be fed into the main_program as input data. """ def __init__(self, d_model, warmup_steps, learning_rate=0.001, current_steps=0, name="learning_rate"): self.current_steps = current_steps self.warmup_steps = warmup_steps self.d_model = d_model self.static_lr = learning_rate self.learning_rate = layers.create_global_var( name=name, shape=[1], value=float(learning_rate), dtype="float32", persistable=True) def update_learning_rate(self): self.current_steps += 1 lr_value = np.power(self.d_model, -0.5) * np.min([ np.power(self.current_steps, -0.5), np.power(self.warmup_steps, -1.5) * self.current_steps ]) * self.static_lr return np.array([lr_value], dtype="float32") #from transformer_train import train_loop def pad_batch_data(insts, pad_idx, n_head, is_target=False, is_label=False, return_attn_bias=True, return_max_len=True, return_num_token=False): """ Pad the instances to the max sequence length in batch, and generate the corresponding position data and attention bias. """ return_list = [] max_len = max(len(inst) for inst in insts) num_token = six.moves.reduce( lambda x, y: x + y, [len(inst) for inst in insts]) if return_num_token else 0 # Any token included in dict can be used to pad, since the paddings' loss # will be masked out by weights and make no effect on parameter gradients. inst_data = np.array( [inst + [pad_idx] * (max_len - len(inst)) for inst in insts]) return_list += [inst_data.astype("int64").reshape([-1, 1])] if is_label: # label weight inst_weight = np.array( [[1.] * len(inst) + [0.] * (max_len - len(inst)) for inst in insts]) return_list += [inst_weight.astype("float32").reshape([-1, 1])] else: # position data inst_pos = np.array([ list(range(1, len(inst) + 1)) + [0] * (max_len - len(inst)) for inst in insts ]) return_list += [inst_pos.astype("int64").reshape([-1, 1])] if return_attn_bias: if is_target: # This is used to avoid attention on paddings and subsequent # words. slf_attn_bias_data = np.ones((inst_data.shape[0], max_len, max_len)) slf_attn_bias_data = np.triu(slf_attn_bias_data, 1).reshape([-1, 1, max_len, max_len]) slf_attn_bias_data = np.tile(slf_attn_bias_data, [1, n_head, 1, 1]) * [-1e9] else: # This is used to avoid attention on paddings. slf_attn_bias_data = np.array([[0] * len(inst) + [-1e9] * (max_len - len(inst)) for inst in insts]) slf_attn_bias_data = np.tile( slf_attn_bias_data.reshape([-1, 1, 1, max_len]), [1, n_head, max_len, 1]) return_list += [slf_attn_bias_data.astype("float32")] if return_max_len: return_list += [max_len] if return_num_token: return_list += [num_token] return return_list if len(return_list) > 1 else return_list[0] def prepare_batch_input(insts, data_input_names, src_pad_idx, trg_pad_idx, n_head, d_model): """ Put all padded data needed by training into a dict. """ src_word, src_pos, src_slf_attn_bias, src_max_len = pad_batch_data( [inst[0] for inst in insts], src_pad_idx, n_head, is_target=False) src_word = src_word.reshape(-1, src_max_len, 1) src_pos = src_pos.reshape(-1, src_max_len, 1) trg_word, trg_pos, trg_slf_attn_bias, trg_max_len = pad_batch_data( [inst[1] for inst in insts], trg_pad_idx, n_head, is_target=True) trg_word = trg_word.reshape(-1, trg_max_len, 1) trg_pos = trg_pos.reshape(-1, trg_max_len, 1) trg_src_attn_bias = np.tile(src_slf_attn_bias[:, :, ::src_max_len, :], [1, 1, trg_max_len, 1]).astype("float32") lbl_word, lbl_weight, num_token = pad_batch_data( [inst[2] for inst in insts], trg_pad_idx, n_head, is_target=False, is_label=True, return_attn_bias=False, return_max_len=False, return_num_token=True) data_input_dict = dict( list( zip(data_input_names, [ src_word, src_pos, src_slf_attn_bias, trg_word, trg_pos, trg_slf_attn_bias, trg_src_attn_bias, lbl_word, lbl_weight ]))) return data_input_dict, np.asarray([num_token], dtype="float32") def read_multiple(reader, count, clip_last=True): """ Stack data from reader for multi-devices. """ def __impl__(): res = [] for item in reader(): res.append(item) if len(res) == count: yield res res = [] if len(res) == count: yield res elif not clip_last: data = [] for item in res: data += item if len(data) > count: inst_num_per_part = len(data) // count yield [ data[inst_num_per_part * i:inst_num_per_part * (i + 1)] for i in range(count) ] return __impl__ def split_data(data, num_part): """ Split data for each device. """ if len(data) == num_part: return data data = data[0] inst_num_per_part = len(data) // num_part return [ data[inst_num_per_part * i:inst_num_per_part * (i + 1)] for i in range(num_part) ] def test_context(test_program, avg_cost, train_exe, dev_count, data_input_names, sum_cost, token_num): val_data = DataReader( src_vocab_fpath=TrainTaskConfig.src_vocab_fpath, trg_vocab_fpath=TrainTaskConfig.trg_vocab_fpath, fpattern=TrainTaskConfig.val_file_pattern, token_delimiter=TrainTaskConfig.token_delimiter, use_token_batch=TrainTaskConfig.use_token_batch, batch_size=TrainTaskConfig.batch_size * (1 if TrainTaskConfig.use_token_batch else dev_count), pool_size=TrainTaskConfig.pool_size, sort_type=TrainTaskConfig.sort_type, start_mark=TrainTaskConfig.special_token[0], end_mark=TrainTaskConfig.special_token[1], unk_mark=TrainTaskConfig.special_token[2], # count start and end tokens out max_length=ModelHyperParams.max_length - 2, clip_last_batch=False, shuffle=False, shuffle_batch=False) build_strategy = fluid.BuildStrategy() strategy = fluid.ExecutionStrategy() strategy.num_threads = 1 test_exe = fluid.ParallelExecutor( use_cuda=TrainTaskConfig.use_gpu, main_program=test_program, share_vars_from=train_exe, build_strategy=build_strategy, exec_strategy=strategy) def test(exe=test_exe): test_total_cost = 0 test_total_token = 0 test_data = read_multiple( reader=val_data.batch_generator, count=dev_count if TrainTaskConfig.use_token_batch else 1) for batch_id, data in enumerate(test_data()): feed_list = [] for place_id, data_buffer in enumerate( split_data( data, num_part=dev_count)): data_input_dict, _ = prepare_batch_input( data_buffer, data_input_names, ModelHyperParams.eos_idx, ModelHyperParams.eos_idx, ModelHyperParams.n_head, ModelHyperParams.d_model) feed_list.append(data_input_dict) outs = exe.run(feed=feed_list, fetch_list=[sum_cost.name, token_num.name]) sum_cost_val, token_num_val = np.array(outs[0]), np.array(outs[1]) test_total_cost += sum_cost_val.sum() test_total_token += token_num_val.sum() test_avg_cost = test_total_cost / test_total_token test_ppl = np.exp([min(test_avg_cost, 100)]) return test_avg_cost, test_ppl return test def train_loop(exe, train_progm, dev_count, sum_cost, avg_cost, lr_scheduler, token_num, predict, test_program): # Initialize the parameters. if TrainTaskConfig.ckpt_path: lr_scheduler.current_steps = TrainTaskConfig.start_step else: exe.run(fluid.framework.default_startup_program()) train_data = DataReader( src_vocab_fpath=TrainTaskConfig.src_vocab_fpath, trg_vocab_fpath=TrainTaskConfig.trg_vocab_fpath, fpattern=TrainTaskConfig.train_file_pattern, token_delimiter=TrainTaskConfig.token_delimiter, use_token_batch=TrainTaskConfig.use_token_batch, batch_size=TrainTaskConfig.batch_size * (1 if TrainTaskConfig.use_token_batch else dev_count), pool_size=TrainTaskConfig.pool_size, sort_type=TrainTaskConfig.sort_type, shuffle=TrainTaskConfig.shuffle, shuffle_batch=TrainTaskConfig.shuffle_batch, start_mark=TrainTaskConfig.special_token[0], end_mark=TrainTaskConfig.special_token[1], unk_mark=TrainTaskConfig.special_token[2], # count start and end tokens out max_length=ModelHyperParams.max_length - 2, clip_last_batch=False) train_data = read_multiple( reader=train_data.batch_generator, count=dev_count if TrainTaskConfig.use_token_batch else 1) build_strategy = fluid.BuildStrategy() # Since the token number differs among devices, customize gradient scale to # use token average cost among multi-devices. and the gradient scale is # `1 / token_number` for average cost. build_strategy.gradient_scale_strategy = fluid.BuildStrategy.GradientScaleStrategy.Customized strategy = fluid.ExecutionStrategy() strategy.num_threads = 1 train_exe = fluid.ParallelExecutor( use_cuda=TrainTaskConfig.use_gpu, loss_name=sum_cost.name, main_program=train_progm, build_strategy=build_strategy, exec_strategy=strategy) data_input_names = encoder_data_input_fields + decoder_data_input_fields[: -1] + label_data_input_fields if TrainTaskConfig.val_file_pattern is not None: test = test_context(test_program, avg_cost, train_exe, dev_count, data_input_names, sum_cost, token_num) # the best cross-entropy value with label smoothing loss_normalizer = -((1. - TrainTaskConfig.label_smooth_eps) * np.log( (1. - TrainTaskConfig.label_smooth_eps )) + TrainTaskConfig.label_smooth_eps * np.log(TrainTaskConfig.label_smooth_eps / ( ModelHyperParams.trg_vocab_size - 1) + 1e-20)) init = False for pass_id in six.moves.xrange(TrainTaskConfig.pass_num): pass_start_time = time.time() for batch_id, data in enumerate(train_data()): if batch_id >= RUN_STEP: break feed_list = [] total_num_token = 0 if TrainTaskConfig.local: lr_rate = lr_scheduler.update_learning_rate() for place_id, data_buffer in enumerate( split_data( data, num_part=dev_count)): data_input_dict, num_token = prepare_batch_input( data_buffer, data_input_names, ModelHyperParams.eos_idx, ModelHyperParams.eos_idx, ModelHyperParams.n_head, ModelHyperParams.d_model) total_num_token += num_token feed_kv_pairs = list(data_input_dict.items()) if TrainTaskConfig.local: feed_kv_pairs += list({ lr_scheduler.learning_rate.name: lr_rate }.items()) feed_list.append(dict(feed_kv_pairs)) if not init: for pos_enc_param_name in pos_enc_param_names: pos_enc = position_encoding_init( ModelHyperParams.max_length + 1, ModelHyperParams.d_model) feed_list[place_id][pos_enc_param_name] = pos_enc if not TrainTaskConfig.check_acc: for feed_dict in feed_list: feed_dict[sum_cost.name + "@GRAD"] = 1. / total_num_token else: b = 100 * TrainTaskConfig.batch_size a = np.asarray([b], dtype="float32") for feed_dict in feed_list: feed_dict[sum_cost.name + "@GRAD"] = 1. / a outs = train_exe.run(fetch_list=[sum_cost.name, token_num.name], feed=feed_list) sum_cost_val, token_num_val = np.array(outs[0]), np.array(outs[1]) total_sum_cost = sum_cost_val.sum() total_token_num = token_num_val.sum() total_avg_cost = total_sum_cost / total_token_num init = True # Validate and save the model for inference. if TrainTaskConfig.val_file_pattern is not None: val_avg_cost, val_ppl = test() print("[%f]" % val_avg_cost) else: assert (False) #import transformer_reader as reader class SortType(object): GLOBAL = 'global' POOL = 'pool' NONE = "none" class Converter(object): def __init__(self, vocab, beg, end, unk, delimiter): self._vocab = vocab self._beg = beg self._end = end self._unk = unk self._delimiter = delimiter def __call__(self, sentence): return [self._beg] + [ self._vocab.get(w, self._unk) for w in sentence.split(self._delimiter) ] + [self._end] class ComposedConverter(object): def __init__(self, converters): self._converters = converters def __call__(self, parallel_sentence): return [ self._converters[i](parallel_sentence[i]) for i in range(len(self._converters)) ] class SentenceBatchCreator(object): def __init__(self, batch_size): self.batch = [] self._batch_size = batch_size def append(self, info): self.batch.append(info) if len(self.batch) == self._batch_size: tmp = self.batch self.batch = [] return tmp class TokenBatchCreator(object): def __init__(self, batch_size): self.batch = [] self.max_len = -1 self._batch_size = batch_size def append(self, info): cur_len = info.max_len max_len = max(self.max_len, cur_len) if max_len * (len(self.batch) + 1) > self._batch_size: result = self.batch self.batch = [info] self.max_len = cur_len return result else: self.max_len = max_len self.batch.append(info) class SampleInfo(object): def __init__(self, i, max_len, min_len): self.i = i self.min_len = min_len self.max_len = max_len class MinMaxFilter(object): def __init__(self, max_len, min_len, underlying_creator): self._min_len = min_len self._max_len = max_len self._creator = underlying_creator def append(self, info): if info.max_len > self._max_len or info.min_len < self._min_len: return else: return self._creator.append(info) @property def batch(self): return self._creator.batch class DataReader(object): """ The data reader loads all data from files and produces batches of data in the way corresponding to settings. An example of returning a generator producing data batches whose data is shuffled in each pass and sorted in each pool: ``` train_data = DataReader( src_vocab_fpath='data/src_vocab_file', trg_vocab_fpath='data/trg_vocab_file', fpattern='data/part-*', use_token_batch=True, batch_size=2000, pool_size=10000, sort_type=SortType.POOL, shuffle=True, shuffle_batch=True, start_mark='', end_mark='', unk_mark='', clip_last_batch=False).batch_generator ``` :param src_vocab_fpath: The path of vocabulary file of source language. :type src_vocab_fpath: basestring :param trg_vocab_fpath: The path of vocabulary file of target language. :type trg_vocab_fpath: basestring :param fpattern: The pattern to match data files. :type fpattern: basestring :param batch_size: The number of sequences contained in a mini-batch. or the maximum number of tokens (include paddings) contained in a mini-batch. :type batch_size: int :param pool_size: The size of pool buffer. :type pool_size: int :param sort_type: The grain to sort by length: 'global' for all instances; 'pool' for instances in pool; 'none' for no sort. :type sort_type: basestring :param clip_last_batch: Whether to clip the last uncompleted batch. :type clip_last_batch: bool :param tar_fname: The data file in tar if fpattern matches a tar file. :type tar_fname: basestring :param min_length: The minimum length used to filt sequences. :type min_length: int :param max_length: The maximum length used to filt sequences. :type max_length: int :param shuffle: Whether to shuffle all instances. :type shuffle: bool :param shuffle_batch: Whether to shuffle the generated batches. :type shuffle_batch: bool :param use_token_batch: Whether to produce batch data according to token number. :type use_token_batch: bool :param field_delimiter: The delimiter used to split source and target in each line of data file. :type field_delimiter: basestring :param token_delimiter: The delimiter used to split tokens in source or target sentences. :type token_delimiter: basestring :param start_mark: The token representing for the beginning of sentences in dictionary. :type start_mark: basestring :param end_mark: The token representing for the end of sentences in dictionary. :type end_mark: basestring :param unk_mark: The token representing for unknown word in dictionary. :type unk_mark: basestring :param seed: The seed for random. :type seed: int """ def __init__(self, src_vocab_fpath, trg_vocab_fpath, fpattern, batch_size, pool_size, sort_type=SortType.GLOBAL, clip_last_batch=True, tar_fname=None, min_length=0, max_length=100, shuffle=True, shuffle_batch=False, use_token_batch=False, field_delimiter="\t", token_delimiter=" ", start_mark="", end_mark="", unk_mark="", seed=0): self._src_vocab = self.load_dict(src_vocab_fpath) self._only_src = True if trg_vocab_fpath is not None: self._trg_vocab = self.load_dict(trg_vocab_fpath) self._only_src = False self._pool_size = pool_size self._batch_size = batch_size self._use_token_batch = use_token_batch self._sort_type = sort_type self._clip_last_batch = clip_last_batch self._shuffle = shuffle self._shuffle_batch = shuffle_batch self._min_length = min_length self._max_length = max_length self._field_delimiter = field_delimiter self._token_delimiter = token_delimiter self.load_src_trg_ids(end_mark, fpattern, start_mark, tar_fname, unk_mark) self._random = random.Random(x=seed) def load_src_trg_ids(self, end_mark, fpattern, start_mark, tar_fname, unk_mark): converters = [ Converter( vocab=self._src_vocab, beg=self._src_vocab[start_mark], end=self._src_vocab[end_mark], unk=self._src_vocab[unk_mark], delimiter=self._token_delimiter) ] if not self._only_src: converters.append( Converter( vocab=self._trg_vocab, beg=self._trg_vocab[start_mark], end=self._trg_vocab[end_mark], unk=self._trg_vocab[unk_mark], delimiter=self._token_delimiter)) converters = ComposedConverter(converters) self._src_seq_ids = [] self._trg_seq_ids = None if self._only_src else [] self._sample_infos = [] for i, line in enumerate(self._load_lines(fpattern, tar_fname)): src_trg_ids = converters(line) self._src_seq_ids.append(src_trg_ids[0]) lens = [len(src_trg_ids[0])] if not self._only_src: self._trg_seq_ids.append(src_trg_ids[1]) lens.append(len(src_trg_ids[1])) self._sample_infos.append(SampleInfo(i, max(lens), min(lens))) def _load_lines(self, fpattern, tar_fname): fpaths = glob.glob(fpattern) if len(fpaths) == 1 and tarfile.is_tarfile(fpaths[0]): if tar_fname is None: raise Exception("If tar file provided, please set tar_fname.") f = tarfile.open(fpaths[0], "r") for line in f.extractfile(tar_fname): line = cpt.to_text(line) fields = line.strip("\n").split(self._field_delimiter) if (not self._only_src and len(fields) == 2) or ( self._only_src and len(fields) == 1): yield fields else: for fpath in fpaths: if not os.path.isfile(fpath): raise IOError("Invalid file: %s" % fpath) with open(fpath, "rb") as f: for line in f: line = cpt.to_text(line) fields = line.strip("\n").split(self._field_delimiter) if (not self._only_src and len(fields) == 2) or ( self._only_src and len(fields) == 1): yield fields @staticmethod def load_dict(dict_path, reverse=False): word_dict = {} with open(dict_path, "rb") as fdict: for idx, line in enumerate(fdict): line = cpt.to_text(line) if reverse: word_dict[idx] = line.strip("\n") else: word_dict[line.strip("\n")] = idx return word_dict def batch_generator(self): # global sort or global shuffle if self._sort_type == SortType.GLOBAL: infos = sorted( self._sample_infos, key=lambda x: x.max_len, reverse=True) else: if self._shuffle: infos = self._sample_infos self._random.shuffle(infos) else: infos = self._sample_infos if self._sort_type == SortType.POOL: for i in range(0, len(infos), self._pool_size): infos[i:i + self._pool_size] = sorted( infos[i:i + self._pool_size], key=lambda x: x.max_len) # concat batch batches = [] batch_creator = TokenBatchCreator( self._batch_size ) if self._use_token_batch else SentenceBatchCreator(self._batch_size) batch_creator = MinMaxFilter(self._max_length, self._min_length, batch_creator) for info in infos: batch = batch_creator.append(info) if batch is not None: batches.append(batch) if not self._clip_last_batch and len(batch_creator.batch) != 0: batches.append(batch_creator.batch) if self._shuffle_batch: self._random.shuffle(batches) for batch in batches: batch_ids = [info.i for info in batch] if self._only_src: yield [[self._src_seq_ids[idx]] for idx in batch_ids] else: yield [(self._src_seq_ids[idx], self._trg_seq_ids[idx][:-1], self._trg_seq_ids[idx][1:]) for idx in batch_ids] #from transformer_model import transformer def position_encoding_init(n_position, d_pos_vec): """ Generate the initial values for the sinusoid position encoding table. """ position_enc = np.array([[ pos / np.power(10000, 2 * (j // 2) / d_pos_vec) for j in range(d_pos_vec) ] if pos != 0 else np.zeros(d_pos_vec) for pos in range(n_position)]) position_enc[1:, 0::2] = np.sin(position_enc[1:, 0::2]) # dim 2i position_enc[1:, 1::2] = np.cos(position_enc[1:, 1::2]) # dim 2i+1 return position_enc.astype("float32") def multi_head_attention(queries, keys, values, attn_bias, d_key, d_value, d_model, n_head=1, dropout_rate=0., cache=None): """ Multi-Head Attention. Note that attn_bias is added to the logit before computing softmax activiation to mask certain selected positions so that they will not considered in attention weights. """ if not (len(queries.shape) == len(keys.shape) == len(values.shape) == 3): raise ValueError( "Inputs: queries, keys and values should all be 3-D tensors.") def __compute_qkv(queries, keys, values, n_head, d_key, d_value): """ Add linear projection to queries, keys, and values. """ q = layers.fc(input=queries, size=d_key * n_head, num_flatten_dims=2, param_attr=const_para_attr, bias_attr=const_bias_attr) k = layers.fc(input=keys, size=d_key * n_head, num_flatten_dims=2, param_attr=const_para_attr, bias_attr=const_bias_attr) v = layers.fc(input=values, size=d_value * n_head, num_flatten_dims=2, param_attr=const_para_attr, bias_attr=const_bias_attr) return q, k, v def __split_heads(x, n_head): """ Reshape the last dimension of input tensor x so that it becomes two dimensions and then transpose. Specifically, input a tensor with shape [bs, max_sequence_length, n_head * hidden_dim] then output a tensor with shape [bs, n_head, max_sequence_length, hidden_dim]. """ if n_head == 1: return x hidden_size = x.shape[-1] # The value 0 in shape attr means copying the corresponding dimension # size of the input as the output dimension size. reshaped = layers.reshape( x=x, shape=[0, 0, n_head, hidden_size // n_head]) # permute the dimensions into: # [batch_size, n_head, max_sequence_len, hidden_size_per_head] return layers.transpose(x=reshaped, perm=[0, 2, 1, 3]) def __combine_heads(x): """ Transpose and then reshape the last two dimensions of input tensor x so that it becomes one dimension, which is reverse to __split_heads. """ if len(x.shape) == 3: return x if len(x.shape) != 4: raise ValueError("Input(x) should be a 4-D Tensor.") trans_x = layers.transpose(x, perm=[0, 2, 1, 3]) # The value 0 in shape attr means copying the corresponding dimension # size of the input as the output dimension size. return layers.reshape( x=trans_x, shape=list(map(int, [0, 0, trans_x.shape[2] * trans_x.shape[3]]))) def scaled_dot_product_attention(q, k, v, attn_bias, d_model, dropout_rate): """ Scaled Dot-Product Attention """ scaled_q = layers.scale(x=q, scale=d_model**-0.5) product = layers.matmul(x=scaled_q, y=k, transpose_y=True) if attn_bias: product += attn_bias weights = layers.softmax(product) if dropout_rate: weights = layers.dropout( weights, dropout_prob=dropout_rate, seed=ModelHyperParams.dropout_seed, is_test=False) out = layers.matmul(weights, v) return out q, k, v = __compute_qkv(queries, keys, values, n_head, d_key, d_value) if cache is not None: # use cache and concat time steps k = cache["k"] = layers.concat([cache["k"], k], axis=1) v = cache["v"] = layers.concat([cache["v"], v], axis=1) q = __split_heads(q, n_head) k = __split_heads(k, n_head) v = __split_heads(v, n_head) ctx_multiheads = scaled_dot_product_attention(q, k, v, attn_bias, d_model, dropout_rate) out = __combine_heads(ctx_multiheads) # Project back to the model size. proj_out = layers.fc(input=out, size=d_model, num_flatten_dims=2, param_attr=const_para_attr, bias_attr=const_bias_attr) return proj_out def positionwise_feed_forward(x, d_inner_hid, d_hid): """ Position-wise Feed-Forward Networks. This module consists of two linear transformations with a ReLU activation in between, which is applied to each position separately and identically. """ hidden = layers.fc(input=x, size=d_inner_hid, num_flatten_dims=2, act="relu", param_attr=const_para_attr, bias_attr=const_bias_attr) out = layers.fc(input=hidden, size=d_hid, num_flatten_dims=2, param_attr=const_para_attr, bias_attr=const_bias_attr) return out def pre_post_process_layer(prev_out, out, process_cmd, dropout_rate=0.): """ Add residual connection, layer normalization and droput to the out tensor optionally according to the value of process_cmd. This will be used before or after multi-head attention and position-wise feed-forward networks. """ for cmd in process_cmd: if cmd == "a": # add residual connection out = out + prev_out if prev_out else out elif cmd == "n": # add layer normalization out = layers.layer_norm( out, begin_norm_axis=len(out.shape) - 1, param_attr=fluid.initializer.Constant(1.), bias_attr=fluid.initializer.Constant(0.)) elif cmd == "d": # add dropout if dropout_rate: out = layers.dropout( out, dropout_prob=dropout_rate, seed=ModelHyperParams.dropout_seed, is_test=False) return out pre_process_layer = partial(pre_post_process_layer, None) post_process_layer = pre_post_process_layer def prepare_encoder(src_word, src_pos, src_vocab_size, src_emb_dim, src_max_len, dropout_rate=0., word_emb_param_name=None, pos_enc_param_name=None): """Add word embeddings and position encodings. The output tensor has a shape of: [batch_size, max_src_length_in_batch, d_model]. This module is used at the bottom of the encoder stacks. """ if TrainTaskConfig.check_acc: src_word_emb = layers.embedding( src_word, size=[src_vocab_size, src_emb_dim], param_attr=fluid.ParamAttr( name=word_emb_param_name, initializer=fluid.initializer.ConstantInitializer(0.001))) else: src_word_emb = layers.embedding( src_word, size=[src_vocab_size, src_emb_dim], param_attr=fluid.ParamAttr( name=word_emb_param_name, initializer=fluid.initializer.Normal(0., src_emb_dim**-0.5))) src_word_emb = layers.scale(x=src_word_emb, scale=src_emb_dim**0.5) src_pos_enc = layers.embedding( src_pos, size=[src_max_len, src_emb_dim], param_attr=fluid.ParamAttr( name=pos_enc_param_name, trainable=False, initializer=fluid.initializer.ConstantInitializer(0.001))) src_pos_enc.stop_gradient = True enc_input = src_word_emb + src_pos_enc return layers.dropout( enc_input, dropout_prob=dropout_rate, seed=ModelHyperParams.dropout_seed, is_test=False) if dropout_rate else enc_input prepare_encoder = partial( prepare_encoder, pos_enc_param_name=pos_enc_param_names[0]) prepare_decoder = partial( prepare_encoder, pos_enc_param_name=pos_enc_param_names[1]) def encoder_layer(enc_input, attn_bias, n_head, d_key, d_value, d_model, d_inner_hid, dropout_rate=0.): """The encoder layers that can be stacked to form a deep encoder. This module consits of a multi-head (self) attention followed by position-wise feed-forward networks and both the two components companied with the post_process_layer to add residual connection, layer normalization and droput. """ attn_output = multi_head_attention(enc_input, enc_input, enc_input, attn_bias, d_key, d_value, d_model, n_head, dropout_rate) attn_output = post_process_layer(enc_input, attn_output, "dan", dropout_rate) ffd_output = positionwise_feed_forward(attn_output, d_inner_hid, d_model) return post_process_layer(attn_output, ffd_output, "dan", dropout_rate) def encoder(enc_input, attn_bias, n_layer, n_head, d_key, d_value, d_model, d_inner_hid, dropout_rate=0.): """ The encoder is composed of a stack of identical layers returned by calling encoder_layer. """ for i in range(n_layer): enc_output = encoder_layer(enc_input, attn_bias, n_head, d_key, d_value, d_model, d_inner_hid, dropout_rate) enc_input = enc_output return enc_output def decoder_layer(dec_input, enc_output, slf_attn_bias, dec_enc_attn_bias, n_head, d_key, d_value, d_model, d_inner_hid, dropout_rate=0., cache=None): """ The layer to be stacked in decoder part. The structure of this module is similar to that in the encoder part except a multi-head attention is added to implement encoder-decoder attention. """ slf_attn_output = multi_head_attention( dec_input, dec_input, dec_input, slf_attn_bias, d_key, d_value, d_model, n_head, dropout_rate, cache, ) slf_attn_output = post_process_layer( dec_input, slf_attn_output, "dan", # residual connection + dropout + layer normalization dropout_rate, ) enc_attn_output = multi_head_attention( slf_attn_output, enc_output, enc_output, dec_enc_attn_bias, d_key, d_value, d_model, n_head, dropout_rate, ) enc_attn_output = post_process_layer( slf_attn_output, enc_attn_output, "dan", # residual connection + dropout + layer normalization dropout_rate, ) ffd_output = positionwise_feed_forward( enc_attn_output, d_inner_hid, d_model, ) dec_output = post_process_layer( enc_attn_output, ffd_output, "dan", # residual connection + dropout + layer normalization dropout_rate, ) return dec_output def decoder(dec_input, enc_output, dec_slf_attn_bias, dec_enc_attn_bias, n_layer, n_head, d_key, d_value, d_model, d_inner_hid, dropout_rate=0., caches=None): """ The decoder is composed of a stack of identical decoder_layer layers. """ for i in range(n_layer): cache = None if caches is not None: cache = caches[i] dec_output = decoder_layer( dec_input, enc_output, dec_slf_attn_bias, dec_enc_attn_bias, n_head, d_key, d_value, d_model, d_inner_hid, dropout_rate, cache=cache) dec_input = dec_output return dec_output def make_all_inputs(input_fields): """ Define the input data layers for the transformer model. """ inputs = [] for input_field in input_fields: input_var = layers.data( name=input_field, shape=input_descs[input_field][0], dtype=input_descs[input_field][1], lod_level=input_descs[input_field][2] if len(input_descs[input_field]) == 3 else 0, append_batch_size=False) inputs.append(input_var) return inputs def transformer( src_vocab_size, trg_vocab_size, max_length, n_layer, n_head, d_key, d_value, d_model, d_inner_hid, dropout_rate, weight_sharing, label_smooth_eps, ): if weight_sharing: assert src_vocab_size == src_vocab_size, ( "Vocabularies in source and target should be same for weight sharing." ) enc_inputs = make_all_inputs(encoder_data_input_fields) enc_output = wrap_encoder( src_vocab_size, max_length, n_layer, n_head, d_key, d_value, d_model, d_inner_hid, dropout_rate, weight_sharing, enc_inputs, ) dec_inputs = make_all_inputs(decoder_data_input_fields[:-1]) predict = wrap_decoder( trg_vocab_size, max_length, n_layer, n_head, d_key, d_value, d_model, d_inner_hid, dropout_rate, weight_sharing, dec_inputs, enc_output, ) # Padding index do not contribute to the total loss. The weights is used to # cancel padding index in calculating the loss. label, weights = make_all_inputs(label_data_input_fields) if label_smooth_eps: label = layers.label_smooth( label=layers.one_hot( input=label, depth=trg_vocab_size), epsilon=label_smooth_eps) cost = layers.softmax_with_cross_entropy( logits=layers.reshape( predict, shape=[-1, trg_vocab_size]), label=label, soft_label=True if label_smooth_eps else False) weighted_cost = cost * weights sum_cost = layers.reduce_sum(weighted_cost) token_num = layers.reduce_sum(weights) avg_cost = sum_cost / token_num avg_cost.stop_gradient = True return sum_cost, avg_cost, predict, token_num def wrap_encoder(src_vocab_size, max_length, n_layer, n_head, d_key, d_value, d_model, d_inner_hid, dropout_rate, weight_sharing, enc_inputs=None): """ The wrapper assembles together all needed layers for the encoder. """ if enc_inputs is None: # This is used to implement independent encoder program in inference. src_word, src_pos, src_slf_attn_bias = \ make_all_inputs(encoder_data_input_fields) else: src_word, src_pos, src_slf_attn_bias = \ enc_inputs enc_input = prepare_encoder( src_word, src_pos, src_vocab_size, d_model, max_length, dropout_rate, word_emb_param_name=word_emb_param_names[0]) enc_output = encoder(enc_input, src_slf_attn_bias, n_layer, n_head, d_key, d_value, d_model, d_inner_hid, dropout_rate) return enc_output def wrap_decoder(trg_vocab_size, max_length, n_layer, n_head, d_key, d_value, d_model, d_inner_hid, dropout_rate, weight_sharing, dec_inputs=None, enc_output=None, caches=None): """ The wrapper assembles together all needed layers for the decoder. """ if dec_inputs is None: # This is used to implement independent decoder program in inference. trg_word, trg_pos, trg_slf_attn_bias, trg_src_attn_bias, \ enc_output = make_all_inputs( decoder_data_input_fields + decoder_util_input_fields) else: trg_word, trg_pos, trg_slf_attn_bias, trg_src_attn_bias = dec_inputs dec_input = prepare_decoder( trg_word, trg_pos, trg_vocab_size, d_model, max_length, dropout_rate, word_emb_param_name=word_emb_param_names[0] if weight_sharing else word_emb_param_names[1]) dec_output = decoder( dec_input, enc_output, trg_slf_attn_bias, trg_src_attn_bias, n_layer, n_head, d_key, d_value, d_model, d_inner_hid, dropout_rate, caches=caches) # Return logits for training and probs for inference. if weight_sharing: predict = layers.matmul( x=dec_output, y=fluid.framework._get_var(word_emb_param_names[0]), transpose_y=True) else: predict = layers.fc(input=dec_output, size=trg_vocab_size, num_flatten_dims=2, param_attr=const_para_attr, bias_attr=const_bias_attr) if dec_inputs is None: predict = layers.softmax(predict) return predict def fast_decode( src_vocab_size, trg_vocab_size, max_in_len, n_layer, n_head, d_key, d_value, d_model, d_inner_hid, dropout_rate, weight_sharing, beam_size, max_out_len, eos_idx, ): """ Use beam search to decode. Caches will be used to store states of history steps which can make the decoding faster. """ enc_output = wrap_encoder(src_vocab_size, max_in_len, n_layer, n_head, d_key, d_value, d_model, d_inner_hid, dropout_rate, weight_sharing) start_tokens, init_scores, trg_src_attn_bias = \ make_all_inputs(fast_decoder_data_input_fields ) def beam_search(): max_len = layers.fill_constant( shape=[1], dtype=start_tokens.dtype, value=max_out_len) step_idx = layers.fill_constant( shape=[1], dtype=start_tokens.dtype, value=0) cond = layers.less_than(x=step_idx, y=max_len) while_op = layers.While(cond) # array states will be stored for each step. ids = layers.array_write( layers.reshape(start_tokens, (-1, 1)), step_idx) scores = layers.array_write(init_scores, step_idx) # cell states will be overwrited at each step. # caches contains states of history steps to reduce redundant # computation in decoder. caches = [{ "k": layers.fill_constant_batch_size_like( input=start_tokens, shape=[-1, 0, d_model], dtype=enc_output.dtype, value=0), "v": layers.fill_constant_batch_size_like( input=start_tokens, shape=[-1, 0, d_model], dtype=enc_output.dtype, value=0) } for i in range(n_layer)] with while_op.block(): pre_ids = layers.array_read(array=ids, i=step_idx) pre_ids = layers.reshape(pre_ids, (-1, 1, 1)) pre_scores = layers.array_read(array=scores, i=step_idx) # sequence_expand can gather sequences according to lod thus can be # used in beam search to sift states corresponding to selected ids. pre_src_attn_bias = layers.sequence_expand( x=trg_src_attn_bias, y=pre_scores) pre_enc_output = layers.sequence_expand(x=enc_output, y=pre_scores) pre_caches = [{ "k": layers.sequence_expand( x=cache["k"], y=pre_scores), "v": layers.sequence_expand( x=cache["v"], y=pre_scores), } for cache in caches] pre_pos = layers.elementwise_mul( x=layers.fill_constant_batch_size_like( input=pre_enc_output, # can't use pre_ids here since it has lod value=1, shape=[-1, 1, 1], dtype=pre_ids.dtype), y=layers.increment( x=step_idx, value=1.0, in_place=False), axis=0) logits = wrap_decoder( trg_vocab_size, max_in_len, n_layer, n_head, d_key, d_value, d_model, d_inner_hid, dropout_rate, weight_sharing, dec_inputs=(pre_ids, pre_pos, None, pre_src_attn_bias), enc_output=pre_enc_output, caches=pre_caches) logits = layers.reshape(logits, (-1, trg_vocab_size)) topk_scores, topk_indices = layers.topk( input=layers.softmax(logits), k=beam_size) accu_scores = layers.elementwise_add( x=layers.log(topk_scores), y=layers.reshape( pre_scores, shape=[-1]), axis=0) # beam_search op uses lod to distinguish branches. topk_indices = layers.lod_reset(topk_indices, pre_ids) selected_ids, selected_scores = layers.beam_search( pre_ids=pre_ids, pre_scores=pre_scores, ids=topk_indices, scores=accu_scores, beam_size=beam_size, end_id=eos_idx) layers.increment(x=step_idx, value=1.0, in_place=True) # update states layers.array_write(selected_ids, i=step_idx, array=ids) layers.array_write(selected_scores, i=step_idx, array=scores) layers.assign(pre_src_attn_bias, trg_src_attn_bias) layers.assign(pre_enc_output, enc_output) for i in range(n_layer): layers.assign(pre_caches[i]["k"], caches[i]["k"]) layers.assign(pre_caches[i]["v"], caches[i]["v"]) length_cond = layers.less_than(x=step_idx, y=max_len) finish_cond = layers.logical_not(layers.is_empty(x=selected_ids)) layers.logical_and(x=length_cond, y=finish_cond, out=cond) finished_ids, finished_scores = layers.beam_search_decode( ids, scores, beam_size=beam_size, end_id=eos_idx) return finished_ids, finished_scores finished_ids, finished_scores = beam_search() return finished_ids, finished_scores def get_model(is_dist, is_async): sum_cost, avg_cost, predict, token_num = transformer( ModelHyperParams.src_vocab_size, ModelHyperParams.trg_vocab_size, ModelHyperParams.max_length + 1, ModelHyperParams.n_layer, ModelHyperParams.n_head, ModelHyperParams.d_key, ModelHyperParams.d_value, ModelHyperParams.d_model, ModelHyperParams.d_inner_hid, ModelHyperParams.dropout, ModelHyperParams.weight_sharing, TrainTaskConfig.label_smooth_eps) local_lr_scheduler = LearningRateScheduler(ModelHyperParams.d_model, TrainTaskConfig.warmup_steps, TrainTaskConfig.learning_rate) # Context to do validation. test_program = fluid.default_main_program().clone(for_test=True) if not is_dist: optimizer = fluid.optimizer.Adam( learning_rate=local_lr_scheduler.learning_rate, beta1=TrainTaskConfig.beta1, beta2=TrainTaskConfig.beta2, epsilon=TrainTaskConfig.eps) optimizer.minimize(sum_cost) elif is_async: optimizer = fluid.optimizer.SGD(0.003) optimizer.minimize(sum_cost) else: lr_decay = fluid.layers\ .learning_rate_scheduler\ .noam_decay(ModelHyperParams.d_model, TrainTaskConfig.warmup_steps) optimizer = fluid.optimizer.Adam( learning_rate=lr_decay, beta1=TrainTaskConfig.beta1, beta2=TrainTaskConfig.beta2, epsilon=TrainTaskConfig.eps) optimizer.minimize(sum_cost) return sum_cost, avg_cost, predict, token_num, local_lr_scheduler, test_program def update_args(): src_dict = DataReader.load_dict(TrainTaskConfig.src_vocab_fpath) trg_dict = DataReader.load_dict(TrainTaskConfig.trg_vocab_fpath) dict_args = [ "src_vocab_size", str(len(src_dict)), "trg_vocab_size", str(len(trg_dict)), "bos_idx", str(src_dict[TrainTaskConfig.special_token[0]]), "eos_idx", str(src_dict[TrainTaskConfig.special_token[1]]), "unk_idx", str(src_dict[TrainTaskConfig.special_token[2]]) ] merge_cfg_from_list(dict_args, [TrainTaskConfig, ModelHyperParams]) class DistTransformer2x2(TestDistRunnerBase): def run_pserver(self, args): get_model(True, not args.sync_mode) t = self.get_transpiler(args.trainer_id, fluid.default_main_program(), args.endpoints, args.trainers, args.sync_mode) pserver_prog = t.get_pserver_program(args.current_endpoint) startup_prog = t.get_startup_program(args.current_endpoint, pserver_prog) place = fluid.CPUPlace() exe = fluid.Executor(place) exe.run(startup_prog) exe.run(pserver_prog) def run_trainer(self, args): TrainTaskConfig.use_gpu = args.use_cuda sum_cost, avg_cost, predict, token_num, local_lr_scheduler, test_program = get_model( args.is_dist, not args.sync_mode) if args.is_dist: t = self.get_transpiler(args.trainer_id, fluid.default_main_program(), args.endpoints, args.trainers, args.sync_mode) trainer_prog = t.get_trainer_program() TrainTaskConfig.batch_size = 10 TrainTaskConfig.train_file_pattern = TrainTaskConfig.data_path + "train.tok.clean.bpe.32000.en-de.train_{}".format( args.trainer_id) else: TrainTaskConfig.batch_size = 20 trainer_prog = fluid.default_main_program() if args.use_cuda: place = fluid.CUDAPlace(0) else: place = fluid.CPUPlace() startup_exe = fluid.Executor(place) TrainTaskConfig.local = not args.is_dist train_loop(startup_exe, trainer_prog, 1, sum_cost, avg_cost, local_lr_scheduler, token_num, predict, test_program) if __name__ == "__main__": update_args() runtime_main(DistTransformer2x2)