/* Copyright (c) 2016 Baidu, Inc. All Rights Reserve. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. */ #ifndef PADDLE_ONLY_CPU #include "paddle/utils/Util.h" #include "paddle/math/Matrix.h" #include "paddle/math/SparseMatrix.h" #include #include "paddle/gserver/tests/TestUtil.h" #include "paddle/utils/Stat.h" #include "hl_cuda.h" using namespace paddle; // NOLINT using namespace std; // NOLINT void MatrixCheckErr(const Matrix& matrix1, const Matrix& matrix2) { CHECK(matrix1.getHeight() == matrix2.getHeight()); CHECK(matrix1.getWidth() == matrix2.getWidth()); #ifndef PADDLE_TYPE_DOUBLE real err = 1e-3; #else real err = 1e-10; #endif int height = matrix1.getHeight(); int width = matrix1.getWidth(); const real* data1 = matrix1.getData(); const real* data2 = matrix2.getData(); int count = 0; for (int i = 0; i < height; i++) { for (int j = 0; j < width; j++) { real a = data1[i * width + j]; real b = data2[i * width + j]; if (fabs(a - b) > err) { if ((fabsf(a - b) / fabsf(a)) > (err / 10.0f)) { count++; } } } } EXPECT_EQ(count, 0) << "There are " << count << " different element."; } void testBilinearFwdBwd(int numSamples, int imgSizeH, int imgSizeW, int channels) { int inWidth = imgSizeH * imgSizeW * channels; int outWidth = 2 * imgSizeH * 2 * imgSizeW * channels; real ratioH = 0.5; real ratioW = 0.5; // forward MatrixPtr input = CpuMatrix::create(numSamples, inWidth, false, false); MatrixPtr inputGpu = GpuMatrix::create(numSamples, inWidth, false, true); MatrixPtr target = CpuMatrix::create(numSamples, outWidth, false, false); MatrixPtr targetGpu = GpuMatrix::create(numSamples, outWidth, false, true); MatrixPtr targetCheck = CpuMatrix::create(numSamples, outWidth, false, false); input->randomizeUniform(); inputGpu->copyFrom(*input); target->bilinearForward(*input, imgSizeH, imgSizeW, 2 * imgSizeH, 2 * imgSizeW, channels, ratioH, ratioW); targetGpu->bilinearForward(*inputGpu, imgSizeH, imgSizeW, 2 * imgSizeH, 2 * imgSizeW, channels, ratioH, ratioW); // check targetCheck->copyFrom(*targetGpu); MatrixCheckErr(*target, *targetCheck); // backward MatrixPtr inputGrad = CpuMatrix::create(numSamples, inWidth, false, false); MatrixPtr inputGpuGrad = GpuMatrix::create(numSamples, inWidth, false, true); MatrixPtr targetGrad = CpuMatrix::create(numSamples, outWidth, false, false); MatrixPtr targetGpuGrad = GpuMatrix::create(numSamples, outWidth, false, true); MatrixPtr targetCheckGrad = CpuMatrix::create(numSamples, inWidth, false, false); inputGrad->randomizeUniform(); targetGrad->randomizeUniform(); inputGpuGrad->copyFrom(*inputGrad); targetGpuGrad->copyFrom(*targetGrad); inputGrad->bilinearBackward(*targetGrad, 2 * imgSizeH, 2 * imgSizeW, imgSizeH, imgSizeW, channels, ratioH, ratioW); inputGpuGrad->bilinearBackward(*targetGpuGrad, 2 * imgSizeH, 2 * imgSizeW, imgSizeH, imgSizeW, channels, ratioH, ratioW); // check targetCheckGrad->copyFrom(*inputGpuGrad); MatrixCheckErr(*inputGrad, *targetCheckGrad); } TEST(Profiler, BilinearFwdBwd) { hl_profiler_start(); auto numSamples = 10; auto channels = 16; auto imgSize = 64; testBilinearFwdBwd(numSamples, imgSize, imgSize, channels); hl_profiler_end(); } int main(int argc, char** argv) { testing::InitGoogleTest(&argc, argv); initMain(argc, argv); return RUN_ALL_TESTS(); } #endif /* PADDLE_ONLY_CPU */