import unittest import numpy as np from op_test import OpTest def get_output_shape(attrs, x): img_height = x.shape[2] img_width = x.shape[3] padding_height = attrs['padding_height'] padding_width = attrs['padding_width'] block_height = attrs['block_height'] block_width = attrs['block_width'] stride_height = attrs['stride_height'] stride_width = attrs['stride_width'] output_height = \ 1 + \ (img_height + 2 * padding_height - block_height + stride_height - 1) / \ stride_height output_width = \ 1 + \ (img_width + 2 * padding_width - block_width + stride_width - 1) / \ stride_width return output_height, output_width def im2col(attrs, im, col): """ im: {CHW} col: {outputHeight, outputWidth, inputChannels, filterHeight, filterWidth} """ input_channels = im.shape[0] input_height = im.shape[1] input_width = im.shape[2] output_height = col.shape[0] output_width = col.shape[1] filter_height = col.shape[3] filter_width = col.shape[4] stride_height = attrs['stride_height'] stride_width = attrs['stride_width'] padding_height = attrs['padding_height'] padding_width = attrs['padding_width'] for col_row_idx in range(0, output_height): for col_col_idx in range(0, output_width): for channel in range(0, input_channels): for filter_row_idx in range(0, filter_height): for filter_col_idx in range(0, filter_width): im_row_offset = col_row_idx * stride_height \ + filter_row_idx - padding_height im_col_offset = col_col_idx * stride_width \ + filter_col_idx - padding_width if (im_row_offset < 0 or im_row_offset >= input_height or im_col_offset < 0 or im_col_offset >= input_width): col[col_row_idx][col_col_idx][channel][\ filter_row_idx][filter_col_idx] = 0.0 else: im_offset = (channel * input_height + im_row_offset \ ) * input_width + im_col_offset col[col_row_idx][col_col_idx][channel][\ filter_row_idx][filter_col_idx] = im[channel][ \ im_row_offset][im_col_offset] def block_expand(inputs, attrs): output_height, output_width = get_output_shape(attrs, inputs) img_channels = inputs.shape[1] batch_size = inputs.shape[0] out = np.zeros([ batch_size, output_height, output_width, img_channels, attrs['block_height'], attrs['block_width'] ]).astype("float32") for i in range(len(inputs)): im2col(attrs, inputs[i], out[i]) out = out.reshape([ batch_size * output_height * output_width, img_channels * attrs['block_height'] * attrs['block_width'] ]) return out class TestBlockExpandOp(OpTest): def config(self): self.batch_size = 1 self.img_channels = 3 self.img_height = 4 self.img_width = 4 self.attrs = { 'block_height': 2, 'block_width': 2, 'stride_height': 1, 'stride_width': 1, 'padding_height': 1, 'padding_width': 1, } def setUp(self): self.config() self.op_type = "block_expand" #x = np.random.uniform(0.1, 1, x = np.random.randint(0, 10, [ self.batch_size, self.img_channels, self.img_height, self.img_width ]).astype("float32") out = block_expand(x, self.attrs) self.inputs = {'X': x} self.outputs = {'Out': out} def test_check_output(self): self.check_output() def test_check_grad_normal(self): self.check_grad(['X'], 'Out') class TestBlockExpandOpCase2(TestBlockExpandOp): def config(self): self.batch_size = 2 self.img_channels = 3 self.img_height = 4 self.img_width = 5 self.attrs = { 'block_height': 2, 'block_width': 1, 'stride_height': 2, 'stride_width': 1, 'padding_height': 2, 'padding_width': 1, } class TestBlockExpandOpCase3(TestBlockExpandOp): def config(self): self.batch_size = 3 self.img_channels = 1 self.img_height = 4 self.img_width = 5 self.attrs = { 'block_height': 2, 'block_width': 1, 'stride_height': 2, 'stride_width': 1, 'padding_height': 2, 'padding_width': 0, } class TestBlockExpandOpCase4(TestBlockExpandOp): def config(self): self.batch_size = 2 self.img_channels = 2 self.img_height = 3 self.img_width = 3 self.attrs = { 'block_height': 2, 'block_width': 2, 'stride_height': 1, 'stride_width': 1, 'padding_height': 0, 'padding_width': 0, } if __name__ == '__main__': unittest.main()