/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. */ #include "paddle/fluid/framework/data_layout_transform.h" #include "paddle/fluid/framework/op_registry.h" #include "paddle/fluid/memory/malloc.h" #include "paddle/fluid/platform/mkldnn_reuse.h" namespace paddle { namespace operators { using Tensor = framework::Tensor; using framework::DataLayout; template class TransposeMKLDNNOpKernel : public paddle::framework::OpKernel { public: void Compute(const paddle::framework::ExecutionContext& ctx) const override { PADDLE_ENFORCE(paddle::platform::is_cpu_place(ctx.GetPlace()), "It must use CPUPlace."); auto& dev_ctx = ctx.template device_context(); const auto& mkldnn_engine = dev_ctx.GetEngine(); std::vector axis = ctx.Attr>("axis"); int ndims = axis.size(); auto* input = ctx.Input("X"); auto* output = ctx.Output("Out"); const T* input_data = input->data(); if (ndims == 1) { output->ShareDataWith(*input); return; } std::vector nchw_tz = paddle::framework::vectorize2int(input->dims()); const std::string key = platform::TransposeMKLDNNHandler::GetHash( nchw_tz, axis, ctx.op().Output("Out")); platform::TransposeMKLDNNHandler handler(nchw_tz, axis, dev_ctx, mkldnn_engine, key); auto transpose_src_memory_p = handler.AcquireSrcMemory( input->get_mkldnn_prim_desc(), platform::to_void_cast(input_data)); auto transpose_dst_memory_p = handler.AcquireDstMemory(output, ctx.GetPlace()); auto transpose_p = handler.AcquireTranspose(transpose_dst_memory_p, transpose_src_memory_p); std::vector pipeline; pipeline.push_back(*transpose_p); mkldnn::stream(mkldnn::stream::kind::eager).submit(pipeline).wait(); // Transpose did change logical dimensions of Tensor, but reorder does not. // Reorder does change only physical layout eg. format , strides // so we need to create new primitive descriptor with changed logical layout // so it match output shape auto output_mem_pd = paddle::platform::create_prim_desc_from_dims( paddle::framework::vectorize2int(output->dims()), mkldnn::memory::format::blocked); output->set_mkldnn_prim_desc(output_mem_pd); } }; template class TransposeINT8MKLDNNOpKernel : public paddle::framework::OpKernel { public: void Compute(const paddle::framework::ExecutionContext& ctx) const override { std::vector axis = ctx.Attr>("axis"); std::vector axis_int8 = {0, 2, 3, 1}; if (axis.size() != 1) { PADDLE_ENFORCE_EQ(axis.size(), axis_int8.size()); for (size_t i = 0; i < axis.size(); i++) { PADDLE_ENFORCE_EQ(axis[i], axis_int8[i], "Current INT8 MKLDNN Transpose kernel only surpport " "axis with [0, 2, 3, 1] due to MKL-DNN kernel " "implementation."); } } auto* input = ctx.Input("X"); auto* output = ctx.Output("Out"); output->ShareDataWith(*input); output->set_layout(DataLayout::kMKLDNN); output->set_format(input->format()); } }; template class TransposeMKLDNNGradOpKernel : public paddle::framework::OpKernel { public: void Compute(const paddle::framework::ExecutionContext& ctx) const override { PADDLE_ENFORCE(paddle::platform::is_cpu_place(ctx.GetPlace()), "It must use CPUPlace."); auto* out_grad = ctx.Input(framework::GradVarName("Out")); auto* x_grad = ctx.Output(framework::GradVarName("X")); if (!x_grad) return; auto& dev_ctx = ctx.template device_context(); const auto& mkldnn_engine = dev_ctx.GetEngine(); std::vector axis = ctx.Attr>("axis"); std::vector reversed_axis(axis); int ndims = axis.size(); if (ndims == 1) { x_grad->ShareDataWith(*out_grad); return; } for (size_t i = 0; i < axis.size(); i++) { reversed_axis[axis[i]] = i; } const T* out_grad_data = out_grad->data(); x_grad->mutable_data(ctx.GetPlace()); std::vector nchw_tz = paddle::framework::vectorize2int(out_grad->dims()); const std::string key = platform::TransposeMKLDNNHandler::GetHash( nchw_tz, axis, ctx.op().Output(framework::GradVarName("X"))); platform::TransposeMKLDNNHandler handler(nchw_tz, reversed_axis, dev_ctx, mkldnn_engine, key); auto transpose_src_memory_p = handler.AcquireSrcMemory(out_grad->get_mkldnn_prim_desc(), platform::to_void_cast(out_grad_data)); auto transpose_dst_memory_p = handler.AcquireDstMemory(x_grad, ctx.GetPlace()); auto transpose_p = handler.AcquireTranspose(transpose_dst_memory_p, transpose_src_memory_p); std::vector pipeline; pipeline.push_back(*transpose_p); mkldnn::stream(mkldnn::stream::kind::eager).submit(pipeline).wait(); // Transpose did change logical dimensions of Tensor, but reorder does not. // Reorder does change only physical layout eg. format , strides // so we need to create new primitive descriptor with changed logical layout // so it match output shape auto x_grad_mem_pd = paddle::platform::create_prim_desc_from_dims( paddle::framework::vectorize2int(x_grad->dims()), mkldnn::memory::format::blocked); x_grad->set_mkldnn_prim_desc(x_grad_mem_pd); } }; } // namespace operators } // namespace paddle namespace ops = paddle::operators; REGISTER_OP_KERNEL(transpose2, MKLDNN, ::paddle::platform::CPUPlace, ops::TransposeMKLDNNOpKernel, ops::TransposeINT8MKLDNNOpKernel, ops::TransposeINT8MKLDNNOpKernel); REGISTER_OP_KERNEL(transpose, MKLDNN, ::paddle::platform::CPUPlace, ops::TransposeMKLDNNOpKernel); REGISTER_OP_KERNEL(transpose_grad, MKLDNN, ::paddle::platform::CPUPlace, ops::TransposeMKLDNNGradOpKernel); REGISTER_OP_KERNEL(transpose2_grad, MKLDNN, ::paddle::platform::CPUPlace, ops::TransposeMKLDNNGradOpKernel);