/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. */ #include "paddle/fluid/operators/activation_op.h" #include "paddle/fluid/operators/math/math_cuda_utils.h" #include "paddle/fluid/platform/cuda_device_function.h" #include "paddle/fluid/platform/float16.h" namespace paddle { namespace operators { using Tensor = framework::Tensor; using float16 = paddle::platform::float16; template struct CudaVecType { using type = T; static constexpr int vecsize = 1; }; template <> struct CudaVecType { using type = __half2; static constexpr int vecsize = 2; }; template <> struct CudaVecType { using type = float4; static constexpr int vecsize = 4; }; template class BaseGPUFunctor { public: using ELEMENT_TYPE = T; }; /* ========================================================================== */ /* =========================== relu forward ============================ */ template class ReluGPUFuctor : public BaseGPUFunctor { private: T zero_; public: ReluGPUFuctor() { zero_ = static_cast(0.0f); } // for relu forward when T is double __device__ __forceinline__ typename CudaVecType::type Compute( const typename CudaVecType::type* x); // when num % vecsize != 0 this func will be used __device__ __forceinline__ T ComputeRemainder(const T x) { return x > zero_ ? x : zero_; } }; template <> __device__ __forceinline__ CudaVecType::type ReluGPUFuctor::Compute(const CudaVecType::type* x) { // relu forward : out = max(x, 0) #ifdef __HIPCC__ || __CUDA_ARCH__ >= 350 || CUDA_VERSION >= 300 return __ldg(x) > zero_ ? __ldg(x) : zero_; #else return (*x) > zero_ ? (*x) : zero_; #endif } template <> __device__ __forceinline__ CudaVecType::type ReluGPUFuctor::Compute(const CudaVecType::type* xx) { // relu forward : out = max(xx, 0) return make_float4((xx->x > zero_) * (xx->x), (xx->y > zero_) * (xx->y), (xx->z > zero_) * (xx->z), (xx->w > zero_) * (xx->w)); } template <> __device__ __forceinline__ CudaVecType::type ReluGPUFuctor::Compute(const CudaVecType::type* in) { // relu forward : out = max(in, 0) #ifdef __HIPCC__ || __CUDA_ARCH__ >= 350 || CUDA_VERSION >= 300 const half2 kzero = __float2half2_rn(0.0f); return __hmul2(__hgt2(__ldg(in), kzero), __ldg(in)); #else const float2 xx = __half22float2(*in); return __floats2half2_rn((xx.x > 0.0f) * static_cast(xx.x), (xx.y > 0.0f) * static_cast(xx.y)); #endif } /* ========================================================================== */ /* =========================== relu backward ============================ */ template class ReluGradGPUFunctor : public BaseGPUFunctor { private: T zero_; public: ReluGradGPUFunctor() { zero_ = static_cast(0.0f); } // for relu backward when T is double __device__ __forceinline__ typename CudaVecType::type Compute( const typename CudaVecType::type* out, const typename CudaVecType::type* dout); // when num % vecsize != 0 this func will be used __device__ __forceinline__ T ComputeRemainder(const T out, const T dout) { // relu backward : dx = out > 0 ? dout : 0; return out > zero_ ? dout : zero_; } static constexpr ActBwdOpFwdDeps FwdDeps() { return kDepOut; } }; template <> __device__ __forceinline__ CudaVecType::type ReluGradGPUFunctor::Compute(const CudaVecType::type* out, const CudaVecType::type* dout) { // relu backward : dx = out > 0 ? dout : 0; #ifdef __HIPCC__ || __CUDA_ARCH__ >= 350 || CUDA_VERSION >= 300 return __ldg(out) > zero_ ? __ldg(dout) : zero_; #else return (*out) > zero_ ? (*dout) : zero_; #endif } template <> __device__ __forceinline__ CudaVecType::type ReluGradGPUFunctor::Compute(const CudaVecType::type* out, const CudaVecType::type* dout) { // relu backward : dx = out > 0 ? dout : 0; return make_float4((out->x > zero_) * (dout->x), (out->y > zero_) * (dout->y), (out->z > zero_) * (dout->z), (out->w > zero_) * (dout->w)); } template <> __device__ __forceinline__ CudaVecType::type ReluGradGPUFunctor::Compute(const CudaVecType::type* out, const CudaVecType::type* dout) { // relu backward : dx = out > 0 ? dout : 0; #ifdef __HIPCC__ || __CUDA_ARCH__ >= 350 || CUDA_VERSION >= 300 const half2 kzero = __float2half2_rn(0.0f); return __hmul2(__hgt2(__ldg(out), kzero), __ldg(dout)); #else const float2 xx = __half22float2(*out); const float2 yy = __half22float2(*dout); return __floats2half2_rn((xx.x > 0.0f) * static_cast(yy.x), (xx.y > 0.0f) * static_cast(yy.y)); #endif } /* ========================================================================== */ template __global__ void ActivationGradKernelVec(const T* forward_data, const T* dout, T* dx, int num, Functor functor) { using VecType = typename CudaVecType::type; constexpr int vecsize = CudaVecType::vecsize; int idx = threadIdx.x + blockIdx.x * blockDim.x; int stride = blockDim.x * gridDim.x; int loop = num / vecsize; int tail = num % vecsize; const VecType* in_forward = reinterpret_cast(forward_data); const VecType* in_dout = reinterpret_cast(dout); VecType* out = reinterpret_cast(dx); for (int i = idx; i < loop; i += stride) { out[i] = functor.Compute((in_forward + i), (in_dout + i)); } while (idx == loop && tail) { dx[num - tail] = functor.ComputeRemainder(forward_data[num - tail], dout[num - tail]); --tail; } } template __global__ void ActivationkernelVec(const T* src, T* dst, int num, Functor functor) { constexpr int vecsize = CudaVecType::vecsize; using VecType = typename CudaVecType::type; int idx = threadIdx.x + blockIdx.x * blockDim.x; int stride = blockDim.x * gridDim.x; int loop = num / vecsize; int tail = num % vecsize; const VecType* in = reinterpret_cast(src); VecType* out = reinterpret_cast(dst); for (int i = idx; i < loop; i += stride) { out[i] = functor.Compute((in + i)); } while (idx == loop && tail) { dst[num - tail] = functor.ComputeRemainder(src[num - tail]); --tail; } } template class ActivationGPUKernel : public framework::OpKernel { public: using T = typename Functor::ELEMENT_TYPE; void Compute(const framework::ExecutionContext& context) const override { const framework::Tensor* in_x = nullptr; framework::Tensor* out = nullptr; ExtractActivationTensor(context, &in_x, &out); auto& dev_ctx = context.template device_context(); int num = in_x->numel(); const T* input_data = in_x->data(); T* output_data = out->mutable_data(dev_ctx.GetPlace(), static_cast(num * sizeof(T))); int block = 512; #ifdef __HIPCC__ block = 256; #endif Functor functor; constexpr int vecsize = CudaVecType::vecsize; int grid = max((num / vecsize + block - 1) / block, 1); ActivationkernelVec<<>>(input_data, output_data, num, functor); } }; template class ActivationGradGPUKernel : public framework::OpKernel { public: using T = typename Functor::ELEMENT_TYPE; void Compute(const framework::ExecutionContext& context) const override { const framework::Tensor *x, *out, *d_out; framework::Tensor* d_x = nullptr; x = out = d_out = nullptr; ExtractActivationGradTensor(context, &x, &out, &d_out, &d_x); int numel = d_out->numel(); auto& dev_ctx = context.template device_context(); auto* dx_data = d_x->mutable_data( dev_ctx.GetPlace(), static_cast(numel * sizeof(T))); auto* dout_data = d_out->data(); auto* forward_data = dout_data; if (static_cast(Functor::FwdDeps()) == static_cast(kDepOut)) { // Only need forward output Out forward_data = out->data(); } else if (static_cast(Functor::FwdDeps()) == static_cast(kDepX)) { // Only need forward input X forward_data = x->data(); } int block = 512; #ifdef __HIPCC__ block = 256; #endif Functor functor; constexpr int vecsize = CudaVecType::vecsize; int grid = max((numel / vecsize + block - 1) / block, 1); ActivationGradKernelVec<<>>( forward_data, dout_data, dx_data, numel, functor); } }; } // namespace operators } // namespace paddle namespace ops = paddle::operators; namespace plat = paddle::platform; #define REGISTER_ACTIVATION_CUDA_KERNEL(act_type, op_name, functor, \ grad_functor) \ REGISTER_OP_CUDA_KERNEL( \ act_type, \ ops::ActivationKernel>, \ ops::ActivationKernel>, \ ops::ActivationKernel>); \ REGISTER_OP_CUDA_KERNEL( \ act_type##_grad, ops::ActivationGradKernel>, \ ops::ActivationGradKernel>, \ ops::ActivationGradKernel>); FOR_EACH_ACTIVATION_OP(REGISTER_ACTIVATION_CUDA_KERNEL); /* ======================== leaky relu register ============================ */ REGISTER_ACTIVATION_CUDA_KERNEL(leaky_relu, LeakyRelu, LeakyReluFunctor, LeakyReluGradFunctor); REGISTER_OP_CUDA_KERNEL( leaky_relu_grad_grad, ops::ActivationDoubleGradKernel>, ops::ActivationDoubleGradKernel>, ops::ActivationDoubleGradKernel< plat::CUDADeviceContext, ops::LeakyReluGradGradFunctor>); /* ========================================================================== */ /* ======================== elu register ============================ */ REGISTER_ACTIVATION_CUDA_KERNEL(elu, ELU, ELUFunctor, ELUGradFunctor); REGISTER_OP_CUDA_KERNEL( elu_grad_grad, ops::ELUDoubleGradKernel>, ops::ELUDoubleGradKernel>, ops::ELUDoubleGradKernel>); /* ========================================================================== */ /* =========================== relu register ============================ */ REGISTER_OP_CUDA_KERNEL( relu, ops::ActivationGPUKernel>, ops::ActivationGPUKernel>, ops::ActivationGPUKernel>); REGISTER_OP_CUDA_KERNEL( relu_grad, ops::ActivationGradGPUKernel>, ops::ActivationGradGPUKernel>, ops::ActivationGradGPUKernel>); REGISTER_OP_CUDA_KERNEL( relu_grad_grad, ops::ActivationDoubleGradKernel>, ops::ActivationDoubleGradKernel>, ops::ActivationDoubleGradKernel>); /* ========================================================================== */ /* =========================== sqrt register ============================= */ REGISTER_ACTIVATION_CUDA_KERNEL(sqrt, Sqrt, SqrtFunctor, SqrtGradFunctor); REGISTER_OP_CUDA_KERNEL( sqrt_grad_grad, ops::SqrtDoubleGradKernel>, ops::SqrtDoubleGradKernel>, ops::SqrtDoubleGradKernel>); /* ========================================================================== */ /* =========================== rsqrt register ============================= */ REGISTER_ACTIVATION_CUDA_KERNEL(rsqrt, Rsqrt, RsqrtFunctor, RsqrtGradFunctor); REGISTER_OP_CUDA_KERNEL( rsqrt_grad_grad, ops::RsqrtDoubleGradKernel>, ops::RsqrtDoubleGradKernel>, ops::RsqrtDoubleGradKernel>); /* ========================================================================== */ /* =========================== square register ============================ */ REGISTER_OP_CUDA_KERNEL( square, ops::ActivationKernel>, ops::ActivationKernel>, ops::ActivationKernel>, ops::ActivationKernel>, ops::ActivationKernel>); REGISTER_OP_CUDA_KERNEL( square_grad, ops::ActivationGradKernel>, ops::ActivationGradKernel>, ops::ActivationGradKernel>, ops::ActivationGradKernel>, ops::ActivationGradKernel>); REGISTER_OP_CUDA_KERNEL( square_grad_grad, ops::SquareDoubleGradKernel>, ops::SquareDoubleGradKernel>, ops::SquareDoubleGradKernel>, ops::SquareDoubleGradKernel>, ops::SquareDoubleGradKernel>); /* ========================================================================== */ /* ========================== pow register ============================ */ REGISTER_OP_CUDA_KERNEL( pow, ops::PowKernel>, ops::PowKernel>, ops::PowKernel>, ops::PowKernel>, ops::PowKernel>); REGISTER_OP_CUDA_KERNEL( pow_grad, ops::PowGradKernel>, ops::PowGradKernel>, ops::PowGradKernel>, ops::PowGradKernel>, ops::PowGradKernel>); /* ========================================================================== */ /* ========================== exp register ============================ */ REGISTER_OP_CUDA_KERNEL( exp, ops::ActivationKernel>, ops::ActivationKernel>, ops::ActivationKernel>, ops::ActivationKernel>, ops::ActivationKernel>); REGISTER_OP_CUDA_KERNEL( exp_grad, ops::ActivationGradKernel>, ops::ActivationGradKernel>, ops::ActivationGradKernel>, ops::ActivationGradKernel>, ops::ActivationGradKernel>); /* ========================================================================== */ /* ========================== Log register ==================================*/ REGISTER_ACTIVATION_CUDA_KERNEL(log, Log, LogFunctor, LogGradFunctor); REGISTER_OP_CUDA_KERNEL( log_grad_grad, ops::LogDoubleGradKernel>, ops::LogDoubleGradKernel>, ops::LogDoubleGradKernel>); /* ========================================================================== */