# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from __future__ import division from __future__ import print_function import unittest import paddle import numpy as np import random import paddle.distributed as dist import paddle.fluid as fluid import paddle.distributed.fleet as fleet from paddle import framework def set_random_seed(seed): """Set random seed for reproducability.""" random.seed(seed) np.random.seed(seed) paddle.seed(seed) fleet.meta_parallel.model_parallel_random_seed(seed) class TestParallelMarginSoftmaxCrossEntropyOp(unittest.TestCase): def setUp(self): strategy = fleet.DistributedStrategy() fleet.init(is_collective=True, strategy=strategy) paddle.fluid.set_flags({"FLAGS_retain_grad_for_all_tensor": True}) def test_parallel_margin_softmax_cross_entropy(self): margin1s = [1.0, 1.0, 1.35] margin2s = [0.5, 0.0, 0.0] margin3s = [0.0, 0.35, 0.0] scales = [64.0, 64.0, 64.0] rank_id = dist.get_rank() num_trainer = dist.get_world_size() batch_size = 2 feature_length = 4 seed = 1025 set_random_seed(seed) paddle.seed(rank_id * 10) random.seed(seed) np.random.seed(seed) check_group = dist.new_group(list(range(num_trainer))) for dtype in ('float32', 'float64'): num_class_per_cards = [[4, 8], [2, 2], [4, 2], [3, 9]] for num_class_per_card in num_class_per_cards: num_class = np.sum(num_class_per_card) for margin1, margin2, margin3, scale in zip( margin1s, margin2s, margin3s, scales): for _ in range(5): np_label = np.random.randint(0, num_class, (batch_size, )) label = paddle.to_tensor(np_label, dtype="int64") input = paddle.randn(shape=[batch_size, feature_length], dtype=dtype) input.stop_gradient = False input_l2 = paddle.sqrt( paddle.sum(paddle.square(input), axis=1, keepdim=True)) norm_input = paddle.divide(input, input_l2) weight = paddle.randn( shape=[feature_length, num_class_per_card[rank_id]], dtype=dtype) weight.stop_gradient = False weight_l2 = paddle.sqrt( paddle.sum(paddle.square(weight), axis=0, keepdim=True)) norm_weight = paddle.divide(weight, weight_l2) data = paddle.matmul(norm_input, norm_weight) data.stop_gradient = False sta = np.sum( num_class_per_card[:rank_id]) if rank_id > 0 else 0 end = np.sum(num_class_per_card[:rank_id + 1]) integral_data = np.zeros((batch_size, num_class), dtype=dtype) integral_data[:, sta:end] = data.clone().detach().numpy() integral_data = paddle.to_tensor(integral_data, dtype=dtype) paddle.distributed.all_reduce( integral_data, op=paddle.distributed.ReduceOp.SUM, group=check_group) integral_data = integral_data.detach().clone() integral_data.stop_gradient = False # add arcface margin to logit theta = paddle.acos(integral_data) one_hot_label = paddle.nn.functional.one_hot( label, num_classes=num_class) one_hot_label.stop_gradient = False if margin1 != 1.0: theta = margin1 * theta if margin2 != 0.0: theta = theta + margin2 margin_cos = paddle.cos(theta) if margin3 != 0.0: margin_cos = margin_cos - margin3 diff = one_hot_label * (margin_cos - integral_data) arc_data = (integral_data + diff) * scale loss_a, softmax_a = paddle.nn.functional.margin_cross_entropy( data, label, margin1=margin1, margin2=margin2, margin3=margin3, scale=scale, group=check_group, return_softmax=True, reduction=None) loss_b, softmax_b = paddle.nn.functional.softmax_with_cross_entropy( logits=arc_data, label=paddle.reshape(label, (-1, 1)), return_softmax=True) np.testing.assert_allclose(loss_a.numpy(), loss_b.numpy(), rtol=1e-5, atol=1e-7) integral_prob = np.zeros((batch_size, num_class), dtype=dtype) integral_prob[:, sta:end] = softmax_a.clone().detach( ).numpy() integral_prob = paddle.to_tensor(integral_prob, dtype=dtype) paddle.distributed.all_reduce( integral_prob, op=paddle.distributed.ReduceOp.SUM, group=check_group) integral_prob = integral_prob.detach().clone() integral_prob.stop_gradient = False np.testing.assert_allclose(integral_prob.numpy(), softmax_b.numpy(), rtol=1e-5, atol=1e-6) loss_a = loss_a.sum() / batch_size loss_b = loss_b.sum() / batch_size loss_a.backward() loss_b.backward() integral_grad = np.zeros((batch_size, num_class), dtype=dtype) integral_grad[:, sta:end] = data.grad.clone().detach() integral_grad = paddle.to_tensor(integral_grad, dtype=dtype) paddle.distributed.all_reduce( integral_grad, op=paddle.distributed.ReduceOp.SUM, group=check_group) np.testing.assert_allclose(integral_data.grad.numpy(), integral_grad.numpy(), rtol=1e-5, atol=1e-7) if __name__ == '__main__': unittest.main()