#edit-mode: -*- python -*- # Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from paddle.trainer_config_helpers import * settings(batch_size=15, learning_rate=0) num_words = 5 beam_flag = get_config_arg('beam_search', bool, False) sent_id = data_layer(name="sent_id", size=1) # This layer has no actual use, but only to decide batch_size in generation. # When generating, at least one Memory in RecurrentLayer MUST have a boot layer. dummy_data = data_layer(name="dummy_data_input", size=2) def outer_step(dummy_data): gen_inputs = [StaticInput(input=dummy_data, size=2, is_seq=True), GeneratedInput(size=num_words, embedding_name="wordvec", embedding_size=num_words)] def inner_step(dummy_memory, predict_word): # simplified RNN for testing with mixed_layer(size=num_words) as layer: layer += full_matrix_projection(input=predict_word, param_attr=ParamAttr(name="transtable")) with mixed_layer(size=num_words, act=ExpActivation()) as out: out += trans_full_matrix_projection(input=layer, param_attr=ParamAttr(name="wordvec")) return out beam_gen = beam_search(name="rnn_gen", step=inner_step, input=gen_inputs, bos_id=0, eos_id=num_words-1, beam_size=2 if beam_flag else 1, num_results_per_sample=1, max_length=10) return beam_gen beam_gen_concat = recurrent_group(name="rnn_gen_concat", step=outer_step, input=[SubsequenceInput(dummy_data)]) seqtext_printer_evaluator(input=beam_gen_concat, id_input=sent_id, dict_file="./trainer/tests/test_gen_dict.txt", result_file="./trainer/tests/dump_text.test") #outputs(beam_gen_concat) # In this config, as dummy_data_input doesn't work on beam_gen (we can find dummy_memory # is read-only memory, and isn't used by other layers of step), we show the Inputs and Outputs # as follows. Note that "__beam_search_predict__" is the default output name of beam_search. Inputs("sent_id","dummy_data_input") Outputs("__beam_search_predict__")