# copyright (c) 2018 paddlepaddle authors. all rights reserved. # # licensed under the apache license, version 2.0 (the "license"); # you may not use this file except in compliance with the license. # you may obtain a copy of the license at # # http://www.apache.org/licenses/license-2.0 # # unless required by applicable law or agreed to in writing, software # distributed under the license is distributed on an "as is" basis, # without warranties or conditions of any kind, either express or implied. # see the license for the specific language governing permissions and # limitations under the license. import os import numpy as np import unittest import paddle import paddle.fluid as fluid from paddle.fluid.framework import IrGraph from paddle.fluid import core paddle.enable_static() os.environ["CUDA_VISIBLE_DEVICES"] = "0" os.environ["CPU_NUM"] = "1" def conv_block(): img = fluid.layers.data(name='image', shape=[1, 28, 28], dtype='float32') label = fluid.layers.data(name='label', shape=[1], dtype='int64') conv_pool_1 = fluid.nets.simple_img_conv_pool(input=img, filter_size=5, num_filters=20, pool_size=2, pool_stride=2, act="relu") conv_pool_1 = fluid.layers.batch_norm(conv_pool_1) conv_pool_2 = fluid.nets.simple_img_conv_pool(input=conv_pool_1, filter_size=5, num_filters=50, pool_size=2, pool_stride=2, act="relu") prediction = fluid.layers.fc(input=conv_pool_2, size=10, act='softmax') loss = fluid.layers.cross_entropy(input=prediction, label=label) avg_loss = paddle.mean(loss) return [img, label], avg_loss class TestGraph(unittest.TestCase): def graph_apis(self, use_cuda=False, for_ci=True): main = fluid.Program() startup = fluid.Program() with fluid.unique_name.guard(): with fluid.program_guard(main, startup): feeds, loss = conv_block() opt = fluid.optimizer.Adam(learning_rate=0.001) opt.minimize(loss) graph = IrGraph(core.Graph(main.desc), for_test=False) backup_graph = graph.clone() self.assertEqual(len(graph.all_nodes()), len(backup_graph.all_nodes())) build_strategy = fluid.BuildStrategy() build_strategy.memory_optimize = False build_strategy.enable_inplace = False origin_binary = fluid.CompiledProgram(graph.graph).with_data_parallel( loss_name=loss.name, build_strategy=build_strategy) backup_binary = fluid.CompiledProgram( backup_graph.graph).with_data_parallel( loss_name=loss.name, build_strategy=build_strategy) place = fluid.CUDAPlace(0) if use_cuda else fluid.CPUPlace() exe = fluid.Executor(place) exe.run(startup) iters = 5 batch_size = 8 train_reader = paddle.batch(paddle.dataset.mnist.train(), batch_size=batch_size) feeder = fluid.DataFeeder(feed_list=feeds, place=place) def _train(binary): for _ in range(iters): data = next(train_reader()) loss_v = exe.run(binary, feed=feeder.feed(data), fetch_list=[loss.name]) if not for_ci: print('{}: {}'.format('loss', loss_v)) _train(origin_binary) _train(backup_binary) checkponit_dir = "checkpoint_gpu" if use_cuda else "checkpoint_cpu" def _set_zero(var_name, scope, place): var = scope.find_var(var_name).get_tensor() var_array = np.zeros(var._get_dims()).astype("float32") var.set(var_array, place) sum_before = np.sum( np.array( fluid.global_scope().find_var('conv2d_1.w_0').get_tensor())) fluid.io._save_persistable_nodes(exe, checkponit_dir, graph) _set_zero('conv2d_1.w_0', fluid.global_scope(), place) set_after = np.sum( np.array( fluid.global_scope().find_var('conv2d_1.w_0').get_tensor())) self.assertEqual(set_after, 0) fluid.io._load_persistable_nodes(exe, checkponit_dir, graph) sum_after = np.sum( np.array( fluid.global_scope().find_var('conv2d_1.w_0').get_tensor())) self.assertEqual(sum_before, sum_after) marked_nodes = set() for op in graph.all_op_nodes(): if op.name().find('conv2d') > -1: marked_nodes.add(op) if not for_ci: graph.draw('.', 'residual', marked_nodes) backup_marked_nodes = set() for op in backup_graph.all_op_nodes(): if op.name().find('conv2d') > -1: backup_marked_nodes.add(op) backup_graph.draw('./origin', 'backup', backup_marked_nodes) self.assertFalse(graph.has_circle()) self.assertEqual(graph.graph_num(), 1) nodes = graph.topology_sort() self.assertEqual(len(nodes), len(graph.all_op_nodes())) nodes_map = graph.build_adjacency_list() self.assertEqual(len(nodes_map), len(graph.all_op_nodes())) nodes_num = len(graph.all_nodes()) graph.safe_remove_nodes(marked_nodes) self.assertEqual(len(graph.all_nodes()), nodes_num - len(marked_nodes)) def test_graph_apis_cpu(self): self.graph_apis(use_cuda=False, for_ci=True) def test_graph_apis_cuda(self): if fluid.core.is_compiled_with_cuda(): self.graph_apis(use_cuda=True, for_ci=True) if __name__ == '__main__': unittest.main()