// Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved. // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. #include "paddle/infrt/host_context/mlir_to_runtime_translate.h" #include #include #include "paddle/infrt/common/global.h" #include "paddle/infrt/dialect/mlir_loader.h" #include "paddle/infrt/host_context/core_runtime.h" #include "paddle/infrt/host_context/kernel_registry.h" #include "paddle/infrt/host_context/kernel_utils.h" #include "paddle/infrt/host_context/mlir_program_executor.h" #include "paddle/infrt/kernel/basic_kernels.h" #include "paddle/infrt/kernel/control_flow_kernels.h" #include "paddle/infrt/kernel/tensor_kernels.h" #include "paddle/infrt/kernel/tensor_shape_kernels.h" #include "paddle/infrt/kernel/test_kernels.h" namespace infrt { namespace host_context { TEST(MlirToRuntimeTranslate, basic) { mlir::MLIRContext context; auto source = R"ROC( func @main() -> () { %v0 = Infrt.constant.f32 1.0 %v1 = Infrt.constant.f32 2.0 %v2 = "Infrt.add.f32"(%v0, %v1) : (f32, f32) -> f32 %v3 = "Infrt.mul.f32"(%v2, %v1) : (f32, f32) -> f32 "Infrt.print.f32"(%v1) : (f32) -> () Infrt.return } )ROC"; auto module = dialect::LoadMlirSource(&context, source); EXPECT_TRUE(mlir::succeeded(module->verify())); KernelRegistry registry; kernel::RegisterFloatBasicKernels(®istry); kernel::RegisterIntBasicKernels(®istry); TestMlir(module.get(), ®istry); } TEST(TestMlir, basic) { mlir::MLIRContext context; auto source = R"ROC( func @main() -> () { %v0 = Infrt.constant.f32 1.0 %v1 = Infrt.constant.f32 2.0 %v2 = "Infrt.add.f32"(%v0, %v1) : (f32, f32) -> f32 %v3 = "Infrt.mul.f32"(%v2, %v1) : (f32, f32) -> f32 "Infrt.print.f32"(%v1) : (f32) -> () Infrt.return } )ROC"; auto module = dialect::LoadMlirSource(&context, source); EXPECT_TRUE(mlir::succeeded(module->verify())); KernelRegistry registry; kernel::RegisterFloatBasicKernels(®istry); kernel::RegisterIntBasicKernels(®istry); TestMlir(module.get(), ®istry); } TEST(TestMlir, shadow_copy_tensor_profile) { mlir::MLIRContext* context = infrt::Global::getMLIRContext(); auto head = R"ROC( func @predict(%a: !infrt.dense_tensor, %b: !infrt.dense_tensor) -> (!infrt.dense_tensor, !infrt.dense_tensor) { )ROC"; auto tpl0 = "%a{0} = dt.shallow_copy_tensor %a : !infrt.dense_tensor -> " "!infrt.dense_tensor"; auto tpl1 = "%b{0} = dt.shallow_copy_tensor %b : !infrt.dense_tensor -> " "!infrt.dense_tensor"; auto end = R"ROC( Infrt.return %a0, %b0: !infrt.dense_tensor, !infrt.dense_tensor } )ROC"; std::stringstream ss; ss << head; for (int i = 0; i < 2000; i++) { ss << llvm::formatv(tpl0, i).str() << "\n"; ss << llvm::formatv(tpl1, i).str() << "\n"; } ss << end; auto content = ss.str(); // LOG(INFO) << "content: " << content << std::endl; auto module = dialect::LoadMlirSource(context, content); EXPECT_TRUE(mlir::succeeded(module->verify())); host_context::KernelRegistry registry; kernel::RegisterBasicKernels(®istry); kernel::RegisterTestKernels(®istry); kernel::RegisterTensorShapeKernels(®istry); kernel::RegisterTensorKernels(®istry); kernel::RegisterControlFlowKernels(®istry); MlirProgramExecutor executor(*module, ®istry); executor.BuildFunctions(); auto* func = executor.LookupFunc("predict"); ASSERT_TRUE(func); std::vector in_args; std::vector out_args( {ValueRef(new Value(tensor::DenseHostTensor())), ValueRef(new Value(tensor::DenseHostTensor()))}); auto create_tensor = [] { tensor::DenseHostTensor a(tensor::TensorShape{{200, 3000}}, DType(DType::Kind::F32)); auto* data = reinterpret_cast(a.raw_data()); for (int i = 0; i < a.shape().GetNumElements(); i++) { data[i] = i; } return a; }; std::vector inputs({ValueRef(new Value(create_tensor())), ValueRef(new Value(create_tensor()))}); in_args.assign({inputs[0].get(), inputs[1].get()}); for (int i = 0; i < 500; i++) { func->Execute( llvm::ArrayRef(in_args.data(), in_args.size()), llvm::MutableArrayRef(out_args.data(), out_args.size())); } } } // namespace host_context } // namespace infrt