# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import unittest import numpy as np import paddle import paddle.fluid as fluid import paddle.nn.functional as F from paddle.fluid import Program, program_guard import paddle.fluid.initializer as I import math from op_test import OpTest, skip_check_grad_ci paddle.enable_static() np.random.seed(100) def find_latest_set(num): return 1 + int(math.floor(math.log(num, 2))) class CodeTable(object): def __init__(self, num_classes, code): self.c = num_classes + code def cal_index(self, bit): return (self.c >> (bit + 1)) - 1 def get_length(self): return find_latest_set(self.c) - 1 def cal_bit(self, bit): return self.c & (1 << bit) class CodeTableWithCustomTree(object): def __init__(self, path_table, path_code, index): self.ptable_ = path_table self.pcode_ = path_code self.index_ = index def cal_index(self, bit): return self.ptable_[self.index_][bit] def get_length(self): length = 0 for ele in self.ptable_[self.index_]: # find the first -1 to stop trace if ele >= 0: length = length + 1 else: return length return length def cal_bit(self, bit): return self.pcode_[self.index_][bit] def hsigmoid(x, w, label, bias, num_classes): batch_size = x.shape[0] code_length = find_latest_set(num_classes - 1) code_table = [0 for _ in range(code_length)] pre_output = np.zeros((batch_size, code_length)).astype('float64') pre_sum = np.zeros((batch_size, 1)).astype('float64') out = np.zeros((batch_size, 1)).astype('float64') for i in range(batch_size): code_table = CodeTable(num_classes, label[i]) length = code_table.get_length() for j in range(length): idx = code_table.cal_index(j) pre_output[i][j] += bias[idx][0] for i in range(batch_size): code_table = CodeTable(num_classes, label[i]) length = code_table.get_length() for j in range(length): idx = code_table.cal_index(j) pre_output[i][j] += np.dot(w[idx], x[i]) # clip[-40.0, 40.0] pre_output = np.clip(pre_output, -40.0, 40.0) # out(i, 0) = \sum_j bit(i, j) * preout(i, j) for i in range(batch_size): code_table = CodeTable(num_classes, label[i]) length = code_table.get_length() sum = 0.0 for j in range(length): if code_table.cal_bit(j): sum += pre_output[i][j] out[i] = -1.0 * sum # soft relu pre_output = np.log(1 + np.exp(pre_output)) pre_sum = pre_output.sum(1).reshape((batch_size, 1)) out += pre_sum return pre_output, out def hsigmoid_grad(x, w, label, bias, num_classes): batch_size = x.shape[0] dx = np.zeros(x.shape).astype('float64') dw = np.zeros(w.shape).astype('float64') db = np.zeros(bias.shape).astype('float64') for i in range(batch_size): code_table = CodeTable(num_classes, label[i]) length = code_table.get_length() for j in range(length): idx = code_table.cal_index(j) t = 1 / (1 + np.exp(-(np.dot(w[idx], x[i]) + bias[idx]))) dx[i] = dx[i] + t * w[idx] dw[idx] += t * x[i] db[idx] += t if code_table.cal_bit(j): dx[i] = dx[i] - w[idx] dw[idx] -= x[i] db[idx] -= 1 dx /= batch_size dw /= batch_size db /= batch_size return [dx, dw, db] def hsigmoidWithCustomTree( x, w, path_table, path_code, label, bias, num_classes ): batch_size = x.shape[0] code_length = len(path_table[0]) code_table = [0 for _ in range(code_length)] # init pre_out with shape [N, code_length] pre_output = np.zeros((batch_size, code_length)).astype('float64') pre_sum = np.zeros((batch_size, 1)).astype('float64') out = np.zeros((batch_size, 1)).astype('float64') if isinstance(bias, np.ndarray): for i in range(batch_size): code_table = CodeTableWithCustomTree(path_table, path_code, i) length = code_table.get_length() for j in range(length): idx = code_table.cal_index(j) pre_output[i][j] += bias[idx][0] for i in range(batch_size): code_table = CodeTableWithCustomTree(path_table, path_code, i) length = code_table.get_length() for j in range(length): idx = code_table.cal_index(j) pre_output[i][j] += np.dot(w[idx], x[i]) # clip[-40.0, 40.0] pre_output = np.clip(pre_output, -40.0, 40.0) # out(i, 0) = \sum_j bit(i, j) * preout(i, j) for i in range(batch_size): code_table = CodeTableWithCustomTree(path_table, path_code, i) length = code_table.get_length() sum = 0.0 for j in range(length): if code_table.cal_bit(j): sum += pre_output[i][j] out[i] = -1.0 * sum # soft relu pre_output = np.log(1 + np.exp(pre_output)) pre_sum = pre_output.sum(1).reshape((batch_size, 1)) out += pre_sum return pre_output, out def python_api( input, weight, label, path_table=None, path_code=None, bias=None, num_classes=-1, is_sparse=False, remote_prefetch=False, ): assert ( is_sparse == remote_prefetch ), "is_sparse is equal to remote_prefetch in dygraph." return paddle.nn.functional.hsigmoid_loss( input, label, num_classes, weight, bias, path_table, path_code, is_sparse, ) python_out_sig = ["Out"] class TestHSigmoidOp(OpTest): def setUp(self): self.op_type = "hierarchical_sigmoid" self.python_api = python_api self.python_out_sig = python_out_sig num_classes = 101 feature_size = 5 batch_size = 20 x = np.random.uniform(-1, 1, (batch_size, feature_size)).astype( 'float64' ) w = np.random.uniform(-1, 1, (num_classes - 1, feature_size)).astype( 'float64' ) label = np.random.randint(0, num_classes, (batch_size, 1)).astype( 'int64' ) bias = np.random.uniform(-1, 1, (num_classes - 1, 1)).astype('float64') self.attrs = {'num_classes': num_classes, 'is_sparse': False} self.inputs = {'X': x, 'W': w, 'Label': label, 'Bias': bias} pre_output, out = hsigmoid(x, w, label, bias, num_classes) self.outputs = {'PreOut': pre_output, 'Out': out} self.user_grads = hsigmoid_grad(x, w, label, bias, num_classes) def test_check_output(self): self.check_output(check_eager=True) def test_check_grad(self): self.check_grad( ['X', 'W', 'Bias'], ['Out'], user_defined_grads=self.user_grads, check_eager=True, ) @skip_check_grad_ci( reason="For 'TestHSigmoidOpSparse', check_grad is separately calculated by 'TestHSigmoidOpWithSparseGrad'." ) class TestHSigmoidOpSparse(OpTest): def setUp(self): self.op_type = "hierarchical_sigmoid" self.python_api = python_api self.python_out_sig = python_out_sig num_classes = 6 # using 1,2,3,4,5,6 to build a huffman tree and select 1,2,5,6 as sample feature_size = 8 batch_size = 4 x = np.random.random((batch_size, feature_size)) w = np.random.random((num_classes - 1, feature_size)) label = np.array([0, 1, 4, 5]).astype('int64') path_table = np.array( [ (0, 2, -1, -1, -1), (0, 1, 3, -1, -1), (0, 1, 4, -1, -1), (0, 2, -1, -1, -1), ] ).astype( 'int64' ) # np.array to store 1,2,5,6s' non-leaf path(root -> leaf) path_code = np.array( [ (0, 0, -1, -1, -1), (1, 1, 1, -1, -1), (1, 0, 0, -1, -1), (0, 1, -1, -1, -1), ] ).astype( 'int64' ) # np.array to store bias = np.random.random((num_classes - 1, 1)) self.attrs = {'num_classes': num_classes, 'is_sparse': True} self.inputs = { 'X': x, 'W': w, 'PathTable': path_table, 'PathCode': path_code, 'Label': label, 'Bias': bias, } pre_output, out = hsigmoidWithCustomTree( x, w, path_table, path_code, label, bias, num_classes ) self.outputs = {'PreOut': pre_output, 'Out': out} def test_check_output(self): self.check_output(check_eager=True) class TestHSigmoidOpWithSparseGrad(unittest.TestCase): def hs_net_conf(self, is_sparse): input_word = fluid.layers.data(name="x", shape=[1], dtype='int64') path_table = fluid.layers.data( name='path_table', shape=[3], dtype='int64' ) path_code = fluid.layers.data( name='path_code', shape=[3], dtype='int64' ) label = fluid.layers.data(name='label', shape=[1], dtype='int64') data_list = [input_word, path_table, path_code, label] emb = fluid.layers.embedding( input=input_word, is_sparse=is_sparse, size=[3, 3], param_attr=fluid.ParamAttr( initializer=fluid.initializer.Normal(scale=1 / math.sqrt(3)) ), ) cost = fluid.layers.hsigmoid( input=emb, label=label, bias_attr=True, num_classes=3, path_table=path_table, path_code=path_code, is_custom=True, is_sparse=is_sparse, ) avg_cost = fluid.layers.reduce_mean(cost) return avg_cost, data_list def training_test(self, is_sparse): with fluid.program_guard(fluid.Program(), fluid.Program()): paddle.seed(1) start_up = fluid.default_startup_program() x = np.arange(6).reshape(6) path_table = np.array([(1, 2, -1), (1, 2, -1)]).astype('int64') path_code = np.array([(1, 0, -1), (0, 0, -1)]).astype('int64') label = np.array([1, 4]).astype('int64') loss, data_list = self.hs_net_conf(is_sparse) optimizer = fluid.optimizer.SGD(learning_rate=1e-3) optimizer.minimize(loss) main_program = fluid.default_main_program() place = fluid.CPUPlace() feeder = fluid.DataFeeder(feed_list=data_list, place=place) exe = fluid.Executor(place) exe.run(start_up) result = list() for i in range(10): data = [ ( [[x[i % 2]]], [list(path_table[i % 2])], [list(path_code[i % 2])], [label[i % 2]], ) ] loss_val = exe.run( main_program, feed=feeder.feed(data), fetch_list=[loss] ) result.append(loss_val) return result def test_hs_grad_with_sparse(self): dense_result = self.training_test(is_sparse=False) sparse_result = self.training_test(is_sparse=True) assert dense_result == sparse_result @skip_check_grad_ci( reason="[skip shape check] The huffman tree is structed separately. It will be complicated if use large shape." ) class TestHSigmoidOpWithCostumTree(OpTest): def setUp(self): self.op_type = "hierarchical_sigmoid" self.python_api = python_api self.python_out_sig = python_out_sig num_classes = 6 # using 1,2,3,4,5,6 to build a huffman tree and select 1,2,5,6 as sample feature_size = 8 batch_size = 4 x = np.random.uniform(-1, 1, (batch_size, feature_size)) w = np.random.uniform(-1, 1, (num_classes - 1, feature_size)) label = np.array([0, 1, 4, 5]).astype('int64') path_table = np.array( [ (0, 2, -1, -1, -1), (0, 1, 3, -1, -1), (0, 1, 4, -1, -1), (0, 2, -1, -1, -1), ] ).astype( 'int64' ) # np.array to store 1,2,5,6s' non-leaf path(root -> leaf) path_code = np.array( [ (0, 0, -1, -1, -1), (1, 1, 1, -1, -1), (1, 0, 0, -1, -1), (0, 1, -1, -1, -1), ] ).astype( 'int64' ) # np.array to store bias = np.random.random((num_classes - 1, 1)) self.attrs = {'num_classes': num_classes, 'is_sparse': False} self.inputs = { 'X': x, 'W': w, 'PathTable': path_table, 'PathCode': path_code, 'Label': label, 'Bias': bias, } pre_output, out = hsigmoidWithCustomTree( x, w, path_table, path_code, label, bias, num_classes ) self.outputs = {'PreOut': pre_output, 'Out': out} def test_check_output(self): self.check_output(check_eager=True) def test_check_grad(self): self.check_grad( ['Bias', 'X', 'W'], ['Out'], no_grad_set=set('Label'), check_eager=True, ) @skip_check_grad_ci( reason="[skip shape check] The huffman tree is structed separately. It will be complicated if use large shape." ) class TestHSigmoidOpWithCostumTreeWithoutBias(OpTest): def setUp(self): self.op_type = "hierarchical_sigmoid" self.python_api = python_api self.python_out_sig = python_out_sig num_classes = 6 # using 1,2,3,4,5,6 to build a huffman tree and select 1,2,5,6 as sample feature_size = 8 batch_size = 4 x = np.random.uniform(-1, 1, (batch_size, feature_size)) w = np.random.uniform(-1, 1, (num_classes - 1, feature_size)) label = np.array([0, 1, 4, 5]).astype('int64') path_table = np.array( [ (0, 2, -1, -1, -1), (0, 1, 3, -1, -1), (0, 1, 4, -1, -1), (0, 2, -1, -1, -1), ] ).astype( 'int64' ) # np.array to store 1,2,5,6s' non-leaf path(root -> leaf) path_code = np.array( [ (0, 0, -1, -1, -1), (1, 1, 1, -1, -1), (1, 0, 0, -1, -1), (0, 1, -1, -1, -1), ] ).astype( 'int64' ) # np.array to store # bias = np.random.random((num_classes - 1, 1)).astype("float32") self.attrs = {'num_classes': num_classes, 'is_sparse': False} self.inputs = { 'X': x, 'W': w, 'PathTable': path_table, 'PathCode': path_code, 'Label': label, } pre_output, out = hsigmoidWithCustomTree( x=x, w=w, path_table=path_table, path_code=path_code, label=label, bias=None, num_classes=num_classes, ) self.outputs = {'PreOut': pre_output, 'Out': out} def test_check_output(self): self.check_output(check_eager=True) def test_check_grad(self): self.check_grad( ['X', 'W'], ['Out'], no_grad_set=set('Label'), check_eager=True ) class TestHSigmoidLossAPI(unittest.TestCase): # test paddle.nn.functional.hsigmoid_loss, paddle.nn.HSigmoidLoss def setUp(self): self.dtype = 'float32' self.batch_size = 4 self.feature_size = 6 self.num_classes = 8 self.is_custom = False self.place = paddle.CPUPlace() paddle.set_default_dtype(self.dtype) self.x_np = np.random.uniform( -1, 1, [self.batch_size, self.feature_size] ).astype(self.dtype) self.labels_np = np.random.randint( self.num_classes, size=(self.batch_size, 1), dtype='int64' ) self.weight_np = np.random.uniform( -1, 1, [self.num_classes - 1, self.feature_size] ).astype(self.dtype) self.bias_np = np.random.uniform(-1, 1, (self.num_classes - 1,)).astype( self.dtype ) self.path_table_np = None self.path_code_np = None _, self.out_np = hsigmoid( self.x_np, self.weight_np, self.labels_np, self.bias_np, self.num_classes, ) self.set_attrs() if self.is_custom: _, self.out_np = hsigmoidWithCustomTree( self.x_np, self.weight_np, self.path_table_np, self.path_code_np, self.labels_np, self.bias_np.reshape(-1, 1), self.num_classes, ) def set_attrs(self): pass def test_dygraph_api(self): paddle.disable_static(self.place) x = paddle.to_tensor(self.x_np) labels = paddle.to_tensor(self.labels_np) weight = paddle.to_tensor(self.weight_np) bias = paddle.to_tensor(self.bias_np) path_table = None path_code = None if self.is_custom: path_table = paddle.to_tensor(self.path_table_np) path_code = paddle.to_tensor(self.path_code_np) out1 = F.hsigmoid_loss( x, labels, self.num_classes, weight, bias, path_table, path_code ) weight_attr = I.NumpyArrayInitializer(self.weight_np) bias_attr = I.NumpyArrayInitializer(self.bias_np) m = paddle.nn.HSigmoidLoss( self.feature_size, self.num_classes, weight_attr, bias_attr, self.is_custom, ) out2 = m(x, labels, path_table, path_code) for out in [out1, out2]: np.testing.assert_allclose(self.out_np, out.numpy(), rtol=1e-05) paddle.enable_static() def test_static_api(self): train_program = paddle.static.Program() startup_program = paddle.static.Program() with paddle.static.program_guard(train_program, startup_program): x = paddle.static.data('x', [-1, self.feature_size]) labels = paddle.static.data('labels', [-1, 1], 'int64') weight = paddle.static.data('weight', [-1, self.feature_size]) bias = paddle.static.data( 'bias', [ -1, ], ) path_table = None path_code = None if self.is_custom: path_table = paddle.static.data('path_table', [-1, -1], 'int64') path_code = paddle.static.data('path_code', [-1, -1], 'int64') out1 = F.hsigmoid_loss( x, labels, self.num_classes, weight, bias, path_table, path_code ) weight_attr = paddle.framework.ParamAttr( initializer=I.NumpyArrayInitializer(self.weight_np) ) bias_attr = paddle.framework.ParamAttr( initializer=I.NumpyArrayInitializer(self.bias_np) ) m = paddle.nn.HSigmoidLoss( self.feature_size, self.num_classes, weight_attr, bias_attr, self.is_custom, ) out2 = m(x, labels, path_table, path_code) exe = paddle.static.Executor(self.place) exe.run(startup_program) feed_dict = { 'x': self.x_np, 'labels': self.labels_np, 'weight': self.weight_np, 'bias': self.bias_np, } if self.is_custom: feed_dict["path_code"] = self.path_code_np feed_dict["path_table"] = self.path_table_np ret1, ret2 = exe.run( train_program, feed=feed_dict, fetch_list=[out1, out2] ) for ret in [ret1, ret2]: np.testing.assert_allclose(self.out_np, ret, rtol=1e-05) def test_fluid_api(self): train_program = fluid.Program() startup_program = fluid.Program() with fluid.program_guard(train_program, startup_program): x = fluid.data('x', [-1, self.feature_size]) labels = fluid.data('labels', [-1, 1], 'int64') path_table = None path_code = None if self.is_custom: path_table = fluid.data('path_table', [-1, -1], 'int64') path_code = fluid.data('path_code', [-1, -1], 'int64') weight_attr = I.NumpyArrayInitializer(self.weight_np) bias_attr = I.NumpyArrayInitializer(self.bias_np) out = fluid.layers.hsigmoid( x, labels, self.num_classes, weight_attr, bias_attr, 'out', path_table, path_code, self.is_custom, ) exe = fluid.Executor(self.place) exe.run(startup_program) feed_dict = {'x': self.x_np, 'labels': self.labels_np} if self.is_custom: feed_dict["path_code"] = self.path_code_np feed_dict["path_table"] = self.path_table_np (ret,) = exe.run(train_program, feed=feed_dict, fetch_list=[out]) np.testing.assert_allclose(ret, self.out_np, rtol=1e-05) def test_errors(self): with paddle.static.program_guard( paddle.static.Program(), paddle.static.Program() ): # test paddle.nn.HSigmoidLoss self.assertRaises(ValueError, paddle.nn.HSigmoidLoss, 6, 1) # test paddle.nn.functional.hsigmoid_loss x = paddle.static.data('x', [4, 6]) label = paddle.static.data('label', [4, 1], 'int64') weight = paddle.static.data('weight', [7, 6]) bias = paddle.static.data('bias', [7]) x_int32 = paddle.static.data('x_int32', [4, 6], 'int32') self.assertRaises( TypeError, F.hsigmoid_loss, x_int32, label, 8, weight ) label_float32 = paddle.static.data( 'label_float32', [4, 1], 'float32' ) self.assertRaises( TypeError, F.hsigmoid_loss, x, label_float32, 8, weight ) weight_int32 = paddle.static.data('weight_int32', [7, 6], 'int32') self.assertRaises( TypeError, F.hsigmoid_loss, x, label, 8, weight_int32 ) bias_int32 = paddle.static.data('bias_int32', [7], 'int32') self.assertRaises( TypeError, F.hsigmoid_loss, x, label, 8, weight, bias=bias_int32 ) path_table_int32 = paddle.static.data( 'path_table_int32', [7], 'int32' ) self.assertRaises( TypeError, F.hsigmoid_loss, x, label, 8, weight, path_table=path_table_int32, ) path_code_int32 = paddle.static.data( 'path_code_int32', [7], 'int32' ) self.assertRaises( TypeError, F.hsigmoid_loss, x, label, 8, weight, path_code=path_code_int32, ) # test paddle.nn.HSigmoidLoss paddle.disable_static(self.place) x_arr = np.array([], dtype=np.float32) x = paddle.to_tensor(np.reshape(x_arr, (100000, 0))) label = paddle.to_tensor(0, dtype='int64') self.assertRaises(ValueError, paddle.nn.HSigmoidLoss, x, label) # test paddle.nn.functional.hsigmoid_loss x = paddle.to_tensor(np.reshape(x_arr, (10, 0)), dtype='float32') label = paddle.to_tensor([], dtype='int64') weight = paddle.to_tensor([], dtype='float32') self.assertRaises(ValueError, F.hsigmoid_loss, x, label, 0, weight) paddle.enable_static() # test paddle.fluid.layers.hsigmoid with program_guard(Program()): label = fluid.data('label', [4, 1], 'int64') # The input type must be Variable. self.assertRaises(TypeError, fluid.layers.hsigmoid, 1, label, 2) # The input dtype must be float16, float32, float64. x_int32 = fluid.data(name='x_int32', shape=[4, 3], dtype='int32') self.assertRaises( TypeError, fluid.layers.hsigmoid, x_int32, label, 2 ) # support the input dtype is float32 x_fp32 = fluid.data(name='x_fp32', shape=[4, 3], dtype='float32') fluid.layers.hsigmoid(x_fp32, label, 2) # The label type must be Variable. self.assertRaises(TypeError, fluid.layers.hsigmoid, x_fp32, 1, 2) # The label dtype must be int64. label_int32 = fluid.data('label_int32', [4, 1], 'int32') self.assertRaises( TypeError, fluid.layers.hsigmoid, x_fp32, label_int32, 2 ) class TestHSigmoidLossAPICustom(TestHSigmoidLossAPI): def set_attrs(self): self.is_custom = True self.path_table_np = np.array( [ (0, 2, -1, -1, -1), (0, 1, 3, -1, -1), (0, 1, 4, -1, -1), (0, 2, -1, -1, -1), ] ).astype(np.int64) self.path_code_np = np.array( [ (0, 0, -1, -1, -1), (1, 1, 1, -1, -1), (1, 0, 0, -1, -1), (0, 1, -1, -1, -1), ] ).astype(np.int64) def test_errors(self): pass if __name__ == '__main__': unittest.main()