/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. */ #ifndef PADDLE_FLUID_OPERATORS_NGRAPH_NGRAPH_ENGINE_H_ #define PADDLE_FLUID_OPERATORS_NGRAPH_NGRAPH_ENGINE_H_ #include #include #include #include #include #include #include "paddle/fluid/framework/operator.h" #include "paddle/fluid/framework/program_desc.h" #include "paddle/fluid/framework/var_desc.h" #include "ngraph/ngraph.hpp" namespace paddle { namespace operators { enum class OpState { /* nGraph support state on ops */ FULL_TRAIN, /* Support full ops for train */ PARTIAL_TRAIN, /* Support partial ops for train */ FULL_TEST, /* Support full list of ops for test */ PARTIAL_TEST, /* Support partial list of ops for test */ FULL, /* All ops supported from feed to fetch */ UNKNOWN /* Output all for debug purpose */ }; // cache engine repetitives struct EngineCache { std::shared_ptr ngraph_function; std::set persistables; std::vector var_in; std::vector var_out; std::vector var_in_updates; bool is_test = true; }; // perform graph build through bridge and execute computation class NgraphEngine { public: explicit NgraphEngine(const framework::Scope& scope, const platform::Place& place, const framework::ExecutionContext& ctx); void Run(const framework::Scope& scope, const platform::Place& place) const; static const framework::BlockDesc* p_bdesc; static std::vector feed_vars, fetch_vars; static void FuseNgraphOps( const framework::BlockDesc& prog, std::vector>* ops); private: static std::unordered_map engine_cache; static std::unordered_map< std::string, std::vector>> t_in_cache_; static framework::Variable* pre_var_ptr; const framework::Scope& scope_; const platform::Place& place_; std::vector> fused_ops_; std::unordered_map var_type_map_; std::set persistables_; std::unordered_set post_op_inputs_; OpState op_state_ = OpState::UNKNOWN; bool is_test_{true}; std::string func_cache_key_; // ngraph backend eg. CPU static std::shared_ptr backend_; // ngraph function to call and execute std::shared_ptr ngraph_function_; // var_name of inputs std::vector var_in_; // var_name of outputs from fetch in order std::vector var_out_; // non-persitable var_in std::vector var_in_updates_; // map input vars to nodes std::shared_ptr< std::unordered_map>> var_in_node_map_; // map each var name with a ngraph node std::shared_ptr< std::unordered_map>> var_node_map_; // prepare info for ngraph engine need void Prepare(const std::vector& interval); // get ngraph engine input and output list void BuildNgIO(const std::vector& op_descs, const std::vector& interval); // get ngraph input and define ngraph input parameters void GetNgInputShape(); // Call ngraph bridge to map ops void BuildNgNodes(); // run paddle RuntimeInferShape to get the tensor shape void RunInferShape(); // build ngraph function call void BuildNgFunction(const std::vector& interval); // Check cache for ngraph function or otherwise build the function void GetNgFunction(std::string engine_key, const std::vector& interval); }; } // namespace operators } // namespace paddle #endif // PADDLE_FLUID_OPERATORS_NGRAPH_NGRAPH_ENGINE_H_