# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from ..core.strategy import Strategy from ....framework import Program, Variable, program_guard from ....log_helper import get_logger from .... import Executor import logging __all__ = ['DistillationStrategy'] _logger = get_logger( __name__, logging.INFO, fmt='%(asctime)s-%(levelname)s: %(message)s') class DistillationStrategy(Strategy): def __init__(self, distillers=None, start_epoch=0, end_epoch=0): """ Args: distillers(list): A list of distiller used to combine student graph and teacher graph by adding some loss. start_epoch(int): The epoch when to merge student graph and teacher graph for distillation training. default: 0 end_epoch(int): The epoch when to finish distillation training. default: 0 """ super(DistillationStrategy, self).__init__(start_epoch, end_epoch) self.distillers = distillers def restore_from_checkpoint(self, context): # load from checkpoint if context.epoch_id > 0: if context.epoch_id > self.start_epoch and context.epoch_id < self.end_epoch: _logger.info('Restore DistillationStrategy') self._create_distillation_graph(context) _logger.info('Restore DistillationStrategy finish.') def on_epoch_begin(self, context): if self.start_epoch == context.epoch_id: _logger.info('DistillationStrategy::on_epoch_begin.') self._create_distillation_graph(context) _logger.info('DistillationStrategy set optimize_graph.') def _create_distillation_graph(self, context): """ step 1: Merge student graph and teacher graph into distillation graph. step 2: Add loss into distillation graph by distillers. step 3: Append backward ops and optimize ops into distillation graph for training. """ # step 1 teacher = context.teacher_graphs[0] for var in teacher.program.list_vars(): var.stop_gradient = True graph = context.train_graph.clone() graph.merge(teacher) if 'loss' in graph.out_nodes: graph.out_nodes['student_loss'] = graph.out_nodes['loss'] # step 2 for distiller in self.distillers: graph = distiller.distiller_loss(graph) # step 3 startup_program = Program() with program_guard(graph.program, startup_program): context.distiller_optimizer._name = 'distillation_optimizer' # The learning rate variable may be created in other program. # Update information in optimizer to make # learning rate variable being accessible in current program. optimizer = context.distiller_optimizer if isinstance(optimizer._learning_rate, Variable): optimizer._learning_rate_map[ graph.program] = optimizer._learning_rate optimizer.minimize(graph.var(graph.out_nodes['loss'])._var) exe = Executor(context.place) exe.run(startup_program, scope=context.scope) # backup graph for fine-tune after distillation context.put('distillation_backup_optimize_graph', context.optimize_graph) context.optimize_graph = graph def on_epoch_end(self, context): if context.epoch_id == (self.end_epoch - 1): _logger.info('DistillationStrategy::on_epoch_end.') # restore optimize_graph for fine-tune or other strategy in next stage. context.optimize_graph = context.get( 'distillation_backup_optimize_graph') _logger.info( 'DistillationStrategy set context.optimize_graph to None.')