// Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved. // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. #include "paddle/fluid/inference/anakin/convert/conv2d_fusion.h" #include #include #include #include "paddle/fluid/inference/anakin/convert/helper.h" using anakin::PTuple; namespace paddle { namespace inference { namespace anakin { template void Conv2dFusionOpConverter::operator()( const framework::proto::OpDesc &op, const framework::BlockDesc &block_desc, const framework::Scope &scope, bool test_mode) { framework::OpDesc op_desc(op, nullptr); PADDLE_ENFORCE_EQ(op_desc.Input("Input").size(), 1UL); PADDLE_ENFORCE_EQ(op_desc.Input("Filter").size(), 1UL); PADDLE_ENFORCE_EQ(op_desc.Input("Bias").size(), 1UL); PADDLE_ENFORCE_EQ(op_desc.Output("Output").size(), 1UL); auto input_name = op_desc.Input("Input").front(); auto output_name = op_desc.Output("Output").front(); auto op_name = op_desc.Type() + ":" + op_desc.Output("Output").front(); this->engine_->AddOp(op_name, "Convolution", {input_name}, {output_name}); auto *filter_v = scope.FindVar(op_desc.Input("Filter").front()); PADDLE_ENFORCE_NOT_NULL(filter_v); auto weight_tensor = tensor_from_var(*filter_v, platform::CPUPlace()); auto weight_shape = framework::vectorize2int(weight_tensor->dims()); auto *b_v = scope.FindVar(op_desc.Input("Bias").front()); PADDLE_ENFORCE_NOT_NULL(b_v); PADDLE_ENFORCE_EQ(weight_tensor->dims().size(), 4UL); const int filter_h = weight_tensor->dims()[2]; const int filter_w = weight_tensor->dims()[3]; auto filter_num = weight_tensor->dims()[0]; this->engine_->template AddOpAttr(op_name, "filter_num", filter_num); this->engine_->template AddOpAttr>(op_name, "kernel_size", {filter_h, filter_w}); auto strides = boost::get>(op_desc.GetAttr("strides")); this->engine_->template AddOpAttr>(op_name, "strides", strides); auto paddings = boost::get>(op_desc.GetAttr("paddings")); this->engine_->template AddOpAttr>(op_name, "padding", paddings); auto dilations = boost::get>(op_desc.GetAttr("dilations")); this->engine_->template AddOpAttr>(op_name, "dilation_rate", dilations); const int groups = boost::get(op_desc.GetAttr("groups")); this->engine_->AddOpAttr(op_name, "group", groups); this->engine_->AddOpAttr(op_name, "axis", 1); this->engine_->AddOpAttr(op_name, "bias_term", true); ::anakin::saber::Shape anakin_shape(weight_shape); bool enable_int8 = boost::get(op_desc.HasAttr("enable_int8")); if (enable_int8) { const float int8_range = 127.; float in_scale = boost::get(op_desc.GetAttr("input_scale")); float weight_scale = boost::get(op_desc.GetAttr("weight_scale")); auto *weight1 = ::anakin::graph::GraphGlobalMem::Global() .template new_block<::anakin::AK_INT8>(anakin_shape); float *weight_data = weight_tensor->data(); std::vector weight_int8; int weight_num = weight_tensor->numel(); for (int i = 0; i < weight_tensor->numel(); i++) { bool is_valid_int8 = ((weight_data[i] >= -128) && (weight_data[i] <= 127)); PADDLE_ENFORCE(is_valid_int8, "We are in anakin subgraph int8 mode, the weight of conv " "should be in range [-128, 127]"); weight_int8.push_back(static_cast(weight_data[i])); } memcpy(static_cast(weight1->h_tensor().mutable_data()), static_cast(weight_int8.data()), sizeof(char) * weight_num); weight1->d_tensor().set_shape(anakin_shape); weight1->d_tensor().copy_from(weight1->h_tensor()); this->engine_->AddOpAttr(op_name, "weight_1", *weight1); this->engine_->Graph()->SetOpPrec(op_name, ::anakin::AK_INT8); this->engine_->Graph()->SetWeightsScale(op_name, {weight_scale / int8_range}, false); this->engine_->AddTensorScale(input_name, in_scale / int8_range); } else { auto weight_tensor = tensor_from_var(*filter_v, platform::CPUPlace()); auto weight_shape = framework::vectorize2int(weight_tensor->dims()); auto *weight1 = pblock_from_tensor(*weight_tensor, weight_shape); this->engine_->AddOpAttr(op_name, "weight_1", *weight1); auto weight2 = pblock_from_var(*b_v); this->engine_->AddOpAttr(op_name, "weight_2", *weight2); } } } // namespace anakin } // namespace inference } // namespace paddle #ifdef PADDLE_WITH_CUDA using conv2d_fusion_nv_fp32 = ::paddle::inference::anakin::Conv2dFusionOpConverter< ::anakin::saber::NV, ::anakin::Precision::FP32>; using conv2d_fusion_nv_int8 = ::paddle::inference::anakin::Conv2dFusionOpConverter< ::anakin::saber::NV, ::anakin::Precision::INT8>; REGISTER_CUDA_ANAKIN_OP_CONVERTER(conv2d_fusion, conv2d_fusion_nv_fp32); REGISTER_CUDA_INT8_ANAKIN_OP_CONVERTER(conv2d_fusion, conv2d_fusion_nv_int8); #endif using conv2d_fusion_cpu_fp32 = ::paddle::inference::anakin::Conv2dFusionOpConverter< ::anakin::saber::X86, ::anakin::Precision::FP32>; using conv2d_fusion_cpu_int8 = ::paddle::inference::anakin::Conv2dFusionOpConverter< ::anakin::saber::X86, ::anakin::Precision::INT8>; REGISTER_CPU_ANAKIN_OP_CONVERTER(conv2d_fusion, conv2d_fusion_cpu_fp32); REGISTER_CPU_INT8_ANAKIN_OP_CONVERTER(conv2d_fusion, conv2d_fusion_cpu_int8);