// Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved. // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. #include "paddle/pten/kernels/cpu/linalg.h" #include "paddle/pten/core/kernel_registry.h" // See Note [ Why still include the fluid headers? ] #include "paddle/fluid/framework/eigen.h" #include "paddle/fluid/operators/math/blas.h" #include "paddle/fluid/platform/complex.h" #include "paddle/pten/kernels/functions/math/matmul_func.h" namespace pten { template void Dot(const CPUContext& dev_ctx, const DenseTensor& x, const DenseTensor& y, DenseTensor* out) { auto const *x_ptr = x.data(), *x_ptr_ = &x_ptr[0]; auto const *y_ptr = y.data(), *y_ptr_ = &y_ptr[0]; auto* z = out->mutable_data(); // Loop over the total N elements of both operands while sum-reducing every // B pairs along the way where B is the dimension of the least ordered axis auto&& d = x.dims(); auto const N = x.numel(); auto const B = d[d.size() - 1]; for (int j = 0; j < N / B; j++) { T ss = 0; for (int i = 0; i < B; i++) ss += (*x_ptr_++) * (*y_ptr_++); z[j] = ss; } } template void Matmul(const CPUContext& dev_ctx, const DenseTensor& x, const DenseTensor& y, bool transpose_x, bool transpose_y, DenseTensor* out) { PADDLE_ENFORCE_NE(paddle::framework::product(x.dims()), 0, paddle::platform::errors::InvalidArgument( "The Input(X) dims size must not be equal 0," " but reviced dims size is 0. ")); PADDLE_ENFORCE_NE(paddle::framework::product(y.dims()), 0, paddle::platform::errors::InvalidArgument( "The Input(Y) dims size must not be equal 0," " but reviced dims size is 0. ")); math::MatMulFunction( dev_ctx, x, y, out, transpose_x, transpose_y); } } // namespace pten PT_REGISTER_MODULE(LinalgCPU); using complex64 = ::paddle::platform::complex; using complex128 = ::paddle::platform::complex; PT_REGISTER_KERNEL("dot", CPU, ANY, pten::Dot, float, double, int, int64_t, complex64, complex128) {} PT_REGISTER_KERNEL( "matmul_v2", CPU, ANY, pten::Matmul, float, double, complex64, complex128) { }