/* Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. */ #pragma once #include "paddle/fluid/operators/eigen/eigen_function.h" #include "paddle/phi/core/dense_tensor.h" #include "paddle/phi/kernels/complex_kernel.h" #include "paddle/phi/kernels/funcs/complex_functors.h" #include "paddle/phi/kernels/funcs/eigen/common.h" namespace phi { template struct DotGradFunction { void operator()(const DeviceContext& ctx, const DenseTensor* tensor_x, const DenseTensor* tensor_y, const DenseTensor* tensor_dout, DenseTensor* tensor_dx, DenseTensor* tensor_dy); }; template struct DotGradFunction> { void operator()(const DeviceContext& ctx, const DenseTensor* tensor_x, const DenseTensor* tensor_y, const DenseTensor* tensor_dout, DenseTensor* tensor_dx, DenseTensor* tensor_dy) { #if defined(__NVCC__) || defined(__HIPCC__) if (1 == tensor_dout->dims().size()) { auto dout = EigenVector::Flatten(*tensor_dout); if (tensor_dx) { auto y = EigenVector::Flatten(*tensor_y); auto& dev = *ctx.eigen_device(); Eigen::DSizes size(tensor_dx->numel()); ConjKernel(ctx, *tensor_y, tensor_dx); auto dx = EigenVector::Flatten(*tensor_dx); dx.device(dev) = dx * dout.broadcast(size); } if (tensor_dy) { auto x = EigenVector::Flatten(*tensor_x); auto& dev = *ctx.eigen_device(); Eigen::DSizes size(tensor_dy->numel()); ConjKernel(ctx, *tensor_x, tensor_dy); auto dy = EigenVector::Flatten(*tensor_dy); dy.device(dev) = dy * dout.broadcast(size); } } else { auto dout = EigenMatrix::From(*tensor_dout); if (tensor_dx) { ctx.template Alloc(tensor_dx); auto y = EigenMatrix::From(*tensor_y); auto& dev = *ctx.eigen_device(); Eigen::DSizes size(1, tensor_dx->dims()[1]); ConjKernel(ctx, *tensor_y, tensor_dx); auto dx = EigenMatrix::From(*tensor_dx); dx.device(dev) = dx * dout.broadcast(size); } if (tensor_dy) { ctx.template Alloc(tensor_dy); auto x = EigenMatrix::From(*tensor_x); auto& dev = *ctx.eigen_device(); Eigen::DSizes size(1, tensor_dy->dims()[1]); ConjKernel(ctx, *tensor_x, tensor_dy); auto dy = EigenMatrix::From(*tensor_dy); dy.device(dev) = dy * dout.broadcast(size); } } #else const auto* data_dout = tensor_dout->data(); if (tensor_dx) { auto* data_dx = ctx.template Alloc(tensor_dx); const auto* data_y = tensor_y->data(); const DDim& dim = tensor_x->dims(); size_t N = static_cast(phi::product(dim)); auto step = dim[dim.size() - 1]; int s = -1; for (size_t i = 0; i < N; ++i) { if (0 == i % step) ++s; data_dx[i] = T(data_y[i].real, -data_y[i].imag) * data_dout[s]; } } if (tensor_dy) { auto* data_dy = ctx.template Alloc(tensor_dy); const auto* data_x = tensor_x->data(); const DDim& dim = tensor_y->dims(); size_t N = static_cast(phi::product(dim)); auto step = dim[dim.size() - 1]; int s = -1; for (size_t i = 0; i < N; ++i) { if (0 == i % step) ++s; data_dy[i] = T(data_x[i].real, -data_x[i].imag) * data_dout[s]; } } #endif } }; template struct DotGradFunction> { void operator()(const DeviceContext& ctx, const DenseTensor* tensor_x, const DenseTensor* tensor_y, const DenseTensor* tensor_dout, DenseTensor* tensor_dx, DenseTensor* tensor_dy) { #if defined(__NVCC__) || defined(__HIPCC__) if (1 == tensor_dout->dims().size()) { auto dout = EigenVector::Flatten(*tensor_dout); if (tensor_dx) { auto y = EigenVector::Flatten(*tensor_y); auto dx = EigenVector::Flatten(*tensor_dx); auto& dev = *ctx.eigen_device(); Eigen::DSizes size(tensor_dx->numel()); dx.device(dev) = y * dout.broadcast(size); } if (tensor_dy) { auto x = EigenVector::Flatten(*tensor_x); auto dy = EigenVector::Flatten(*tensor_dy); auto& dev = *ctx.eigen_device(); Eigen::DSizes size(tensor_dy->numel()); dy.device(dev) = x * dout.broadcast(size); } } else { auto dout = EigenMatrix::From(*tensor_dout); if (tensor_dx) { ctx.template Alloc(tensor_dx); auto y = EigenMatrix::From(*tensor_y); auto dx = EigenMatrix::From(*tensor_dx); auto& dev = *ctx.eigen_device(); Eigen::DSizes size(1, tensor_dx->dims()[1]); dx.device(dev) = y * dout.broadcast(size); } if (tensor_dy) { ctx.template Alloc(tensor_dy); auto x = EigenMatrix::From(*tensor_x); auto dy = EigenMatrix::From(*tensor_dy); auto& dev = *ctx.eigen_device(); Eigen::DSizes size(1, tensor_dy->dims()[1]); dy.device(dev) = x * dout.broadcast(size); } } #else auto const *x = tensor_x->data(), *y = tensor_y->data(), *dz = tensor_dout->data(); auto&& d = tensor_x->dims(); auto const N = tensor_x->numel(); auto const B = d[d.size() - 1]; if (tensor_dx) { auto* dx = ctx.template Alloc(tensor_dx); for (auto j = 0; j < N / B; ++j) { auto const ss = dz[j]; for (auto i = 0; i < B; ++i) *dx++ = *y++ * ss; } } if (tensor_dy) { auto* dy = ctx.template Alloc(tensor_dy); for (auto j = 0; j < N / B; ++j) { auto const ss = dz[j]; for (auto i = 0; i < B; i++) *dy++ = *x++ * ss; } } #endif } }; template struct DotDoubleGradFunction { void operator()(const DeviceContext& ctx, const DenseTensor* tensor_x, const DenseTensor* tensor_y, const DenseTensor* tensor_dout, const DenseTensor* tensor_ddx, const DenseTensor* tensor_ddy, DenseTensor* tensor_dx, DenseTensor* tensor_dy, DenseTensor* tensor_ddout); }; template struct DotDoubleGradFunction> { void operator()(const DeviceContext& ctx, const DenseTensor* tensor_x, const DenseTensor* tensor_y, const DenseTensor* tensor_dout, const DenseTensor* tensor_ddx, const DenseTensor* tensor_ddy, DenseTensor* tensor_dx, DenseTensor* tensor_dy, DenseTensor* tensor_ddout) { #if defined(__NVCC__) || defined(__HIPCC__) if (1 == tensor_dout->dims().size()) { DenseTensor tensor_dout_help; auto& dev = *ctx.eigen_device(); if (tensor_dx || tensor_dy) { tensor_dout_help = Conj(ctx, *tensor_dout); } if (tensor_dx) { auto ddy = EigenVector::Flatten(*tensor_ddy); Eigen::DSizes size(tensor_ddy->numel()); auto dx = EigenVector::Flatten(*tensor_dx); auto dout = EigenVector::Flatten(tensor_dout_help); dx.device(dev) = ddy * dout.broadcast(size); } if (tensor_dy) { auto ddx = EigenVector::Flatten(*tensor_ddx); Eigen::DSizes size(tensor_ddx->numel()); auto dy = EigenVector::Flatten(*tensor_dy); auto dout = EigenVector::Flatten(tensor_dout_help); dy.device(dev) = ddx * dout.broadcast(size); } if (tensor_ddout) { DenseTensor tensor_x_help = Conj(ctx, *tensor_x); DenseTensor tensor_y_help = Conj(ctx, *tensor_y); auto x = EigenVector::Flatten(tensor_x_help); auto y = EigenVector::Flatten(tensor_y_help); auto ddx = EigenVector::Flatten(*tensor_ddx); auto ddy = EigenVector::Flatten(*tensor_ddy); auto ddout = EigenVector::Flatten(*tensor_ddout); ddout.device(dev) = (x * ddy + y * ddx).sum(); } } #else const auto* data_dout = tensor_dout->data(); if (tensor_dx) { auto* data_dx = ctx.template Alloc(tensor_dx); const auto* data_ddy = tensor_ddy->data(); const DDim& dim = tensor_dx->dims(); size_t N = static_cast(product(dim)); auto step = dim[dim.size() - 1]; int s = -1; for (size_t i = 0; i < N; ++i) { if (0 == i % step) ++s; data_dx[i] = T(data_dout[s].real, -data_dout[s].imag) * data_ddy[i]; } } if (tensor_dy) { auto* data_dy = ctx.template Alloc(tensor_dy); const auto* data_ddx = tensor_ddx->data(); const DDim& dim = tensor_dy->dims(); size_t N = static_cast(product(dim)); auto step = dim[dim.size() - 1]; int s = -1; for (size_t i = 0; i < N; ++i) { if (0 == i % step) ++s; data_dy[i] = T(data_dout[s].real, -data_dout[s].imag) * data_ddx[i]; } } if (tensor_ddout) { auto* data_ddout = ctx.template Alloc(tensor_ddout); auto* data_x = tensor_x->data(); auto* data_y = tensor_y->data(); auto* data_ddx = tensor_ddx->data(); auto* data_ddy = tensor_ddy->data(); const DDim& dim = tensor_dy->dims(); size_t N = static_cast(product(dim)); auto step = dim[dim.size() - 1]; int s = -1; bool new_s = false; for (size_t i = 0; i < N; ++i) { if (0 == i % step) { ++s; new_s = true; } if (new_s) { data_ddout[s] = T(data_x[i].real, -data_x[i].imag) * data_ddy[i] + T(data_y[i].real, -data_y[i].imag) * data_ddx[i]; } else { data_ddout[s] += T(data_x[i].real, -data_x[i].imag) * data_ddy[i] + T(data_y[i].real, -data_y[i].imag) * data_ddx[i]; } new_s = false; } } #endif } }; template struct DotDoubleGradFunction> { void operator()(const DeviceContext& ctx, const DenseTensor* tensor_x, const DenseTensor* tensor_y, const DenseTensor* tensor_dout, const DenseTensor* tensor_ddx, const DenseTensor* tensor_ddy, DenseTensor* tensor_dx, DenseTensor* tensor_dy, DenseTensor* tensor_ddout) { #if defined(__NVCC__) || defined(__HIPCC__) if (1 == tensor_dout->dims().size()) { auto& dev = *ctx.eigen_device(); auto dout = EigenVector::Flatten(*tensor_dout); if (tensor_dx) { ctx.template Alloc(tensor_dx); auto ddy = EigenVector::Flatten(*tensor_ddy); Eigen::DSizes size(tensor_ddy->numel()); auto dx = EigenVector::Flatten(*tensor_dx); dx.device(dev) = ddy * dout.broadcast(size); } if (tensor_dy) { ctx.template Alloc(tensor_dy); auto ddx = EigenVector::Flatten(*tensor_ddx); Eigen::DSizes size(tensor_ddx->numel()); auto dy = EigenVector::Flatten(*tensor_dy); dy.device(dev) = ddx * dout.broadcast(size); } if (tensor_ddout) { ctx.template Alloc(tensor_ddout); auto x = EigenVector::Flatten(*tensor_x); auto y = EigenVector::Flatten(*tensor_y); auto ddx = EigenVector::Flatten(*tensor_ddx); auto ddy = EigenVector::Flatten(*tensor_ddy); auto ddout = EigenVector::Flatten(*tensor_ddout); ddout.device(dev) = (x * ddy + y * ddx).sum(); } } #else const auto* data_dout = tensor_dout->data(); if (tensor_dx) { auto* data_dx = ctx.template Alloc(tensor_dx); const auto* data_ddy = tensor_ddy->data(); const DDim& dim = tensor_dx->dims(); size_t N = static_cast(product(dim)); auto step = dim[dim.size() - 1]; int s = -1; for (size_t i = 0; i < N; ++i) { if (0 == i % step) ++s; data_dx[i] = data_dout[s] * data_ddy[i]; } } if (tensor_dy) { auto* data_dy = ctx.template Alloc(tensor_dy); const auto* data_ddx = tensor_ddx->data(); const DDim& dim = tensor_dy->dims(); size_t N = static_cast(product(dim)); auto step = dim[dim.size() - 1]; int s = -1; for (size_t i = 0; i < N; ++i) { if (0 == i % step) ++s; data_dy[i] = data_dout[s] * data_ddx[i]; } } if (tensor_ddout) { auto* data_ddout = ctx.template Alloc(tensor_ddout); auto* data_x = tensor_x->data(); auto* data_y = tensor_y->data(); auto* data_ddx = tensor_ddx->data(); auto* data_ddy = tensor_ddy->data(); const DDim& dim = tensor_dy->dims(); size_t N = static_cast(product(dim)); auto step = dim[dim.size() - 1]; int s = -1; bool new_s = false; for (size_t i = 0; i < N; ++i) { if (0 == i % step) { ++s; new_s = true; } if (new_s) { data_ddout[s] = data_x[i] * data_ddy[i] + data_y[i] * data_ddx[i]; } else { data_ddout[s] += data_x[i] * data_ddy[i] + data_y[i] * data_ddx[i]; } new_s = false; } } #endif } }; template struct DotTripleGradFunction { void operator()(const DeviceContext& ctx, const DenseTensor* in_tensor_x, const DenseTensor* in_tensor_y, const DenseTensor* in_tensor_ddx, const DenseTensor* in_tensor_ddy, const DenseTensor* in_tensor_d_dx, const DenseTensor* in_tensor_d_dy, const DenseTensor* in_tensor_dout, const DenseTensor* in_tensor_d_ddout, DenseTensor* out_tensor_d_x, DenseTensor* out_tensor_d_y, DenseTensor* out_tensor_d_dout, DenseTensor* out_tensor_d_ddx, DenseTensor* out_tensor_d_ddy); }; // TODO(wuweilong): enable this function when the unittests framewark for multi // grad is ok (dtype: complex64 or complex128). template struct DotTripleGradFunction> { void operator()(const DeviceContext& ctx, const DenseTensor* in_tensor_x, const DenseTensor* in_tensor_y, const DenseTensor* in_tensor_ddx, const DenseTensor* in_tensor_ddy, const DenseTensor* in_tensor_d_dx, const DenseTensor* in_tensor_d_dy, const DenseTensor* in_tensor_dout, const DenseTensor* in_tensor_d_ddout, DenseTensor* out_tensor_d_x, DenseTensor* out_tensor_d_y, DenseTensor* out_tensor_d_dout, DenseTensor* out_tensor_d_ddx, DenseTensor* out_tensor_d_ddy) { #if defined(__NVCC__) || defined(__HIPCC__) if (1 == in_tensor_d_ddout->dims().size()) { DenseTensor in_tensor_d_ddout_help; auto& dev = *ctx.eigen_device(); if (out_tensor_d_x || out_tensor_d_y) { in_tensor_d_ddout_help = Conj(ctx, *in_tensor_d_ddout); } if (out_tensor_d_x) { auto ddy = EigenVector::Flatten(*in_tensor_ddy); Eigen::DSizes size(in_tensor_ddy->numel()); auto d_x = EigenVector::Flatten(*out_tensor_d_x); auto d_ddout = EigenVector::Flatten(in_tensor_d_ddout_help); d_x.device(dev) = ddy * d_ddout.broadcast(size); } if (out_tensor_d_y) { auto ddx = EigenVector::Flatten(*in_tensor_ddx); Eigen::DSizes size(in_tensor_ddx->numel()); auto d_y = EigenVector::Flatten(*out_tensor_d_y); auto d_ddout = EigenVector::Flatten(in_tensor_d_ddout_help); d_y.device(dev) = ddx * d_ddout.broadcast(size); } if (out_tensor_d_dout) { DenseTensor in_tensor_ddx_help = Conj(ctx, *in_tensor_ddx); DenseTensor in_tensor_ddy_help = Conj(ctx, *in_tensor_ddy); auto ddx = EigenVector::Flatten(in_tensor_ddx_help); auto ddy = EigenVector::Flatten(in_tensor_ddy_help); auto d_dx = EigenVector::Flatten(*in_tensor_d_dx); auto d_dy = EigenVector::Flatten(*in_tensor_d_dy); auto d_dout = EigenVector::Flatten(*out_tensor_d_dout); d_dout.device(dev) = (ddx * d_dy + ddy * d_dx).sum(); } if (out_tensor_d_ddx) { DenseTensor in_tensor_dout_help = Conj(ctx, *in_tensor_dout); DenseTensor in_tensor_y_help = Conj(ctx, *in_tensor_y); auto dout = EigenVector::Flatten(in_tensor_dout_help); auto y = EigenVector::Flatten(in_tensor_y_help); auto d_ddout = EigenVector::Flatten(*in_tensor_d_ddout); auto d_dy = EigenVector::Flatten(*in_tensor_d_dy); auto d_ddx = EigenVector::Flatten(*out_tensor_d_ddx); Eigen::DSizes size(in_tensor_y->numel()); d_ddx.device(dev) = (dout.broadcast(size) * d_dy + y * d_ddout.broadcast(size)); } if (out_tensor_d_ddy) { DenseTensor in_tensor_dout_help = Conj(ctx, *in_tensor_dout); DenseTensor in_tensor_x_help = Conj(ctx, *in_tensor_x); auto dout = EigenVector::Flatten(in_tensor_dout_help); auto x = EigenVector::Flatten(in_tensor_x_help); auto d_ddout = EigenVector::Flatten(*in_tensor_d_ddout); auto d_dx = EigenVector::Flatten(*in_tensor_d_dx); auto d_ddy = EigenVector::Flatten(*out_tensor_d_ddy); Eigen::DSizes size(in_tensor_x->numel()); d_ddy.device(dev) = (dout.broadcast(size) * d_dx + x * d_ddout.broadcast(size)); } } #else const auto* data_d_ddout = in_tensor_d_ddout->data(); if (out_tensor_d_x) { auto* data_d_x = ctx.template Alloc(out_tensor_d_x); const auto* data_ddy = in_tensor_ddy->data(); const DDim& dim = out_tensor_d_x->dims(); size_t N = static_cast(product(dim)); auto step = dim[dim.size() - 1]; int s = -1; for (size_t i = 0; i < N; ++i) { if (0 == i % step) ++s; data_d_x[i] = T(data_ddy[i].real, -data_ddy[i].imag) * data_d_ddout[s]; } } if (out_tensor_d_y) { auto* data_d_y = ctx.template Alloc(out_tensor_d_y); const auto* data_ddx = in_tensor_ddx->data(); const DDim& dim = out_tensor_d_y->dims(); size_t N = static_cast(product(dim)); auto step = dim[dim.size() - 1]; int s = -1; for (size_t i = 0; i < N; ++i) { if (0 == i % step) ++s; data_d_y[i] = T(data_ddx[i].real, -data_ddx[i].imag) * data_d_ddout[s]; } } if (out_tensor_d_dout) { auto* data_d_dout = ctx.template Alloc(out_tensor_d_dout); auto* data_ddx = in_tensor_ddx->data(); auto* data_ddy = in_tensor_ddy->data(); auto* data_d_dx = in_tensor_d_dx->data(); auto* data_d_dy = in_tensor_d_dy->data(); const DDim& dim = out_tensor_d_dout->dims(); size_t N = static_cast(product(dim)); auto step = dim[dim.size() - 1]; int s = -1; bool new_s = false; for (size_t i = 0; i < N; ++i) { if (0 == i % step) { ++s; new_s = true; } if (new_s) { data_d_dout[s] = T(data_ddy[i].real, -data_ddy[i].imag) * data_d_dx[i] + T(data_ddx[i].real, -data_ddx[i].imag) * data_d_dy[i]; } else { data_d_dout[s] += T(data_ddy[i].real, -data_ddy[i].imag) * data_d_dx[i] + T(data_ddx[i].real, -data_ddx[i].imag) * data_d_dy[i]; } new_s = false; } } if (out_tensor_d_ddx) { auto* data_d_ddx = ctx.template Alloc(out_tensor_d_ddx); auto* data_dout = in_tensor_dout->data(); auto* data_d_dy = in_tensor_d_dy->data(); auto* data_y = in_tensor_y->data(); auto* data_d_ddout = in_tensor_d_ddout->data(); const DDim& dim = out_tensor_d_ddx->dims(); size_t N = static_cast(product(dim)); auto step = dim[dim.size() - 1]; int s = -1; for (size_t i = 0; i < N; ++i) { if (0 == i % step) ++s; data_d_ddx[i] = T(data_dout[s].real, -data_dout[s].imag) * data_d_dy[i] + T(data_y[i].real, -data_y[i].imag) * data_d_ddout[s]; } } if (out_tensor_d_ddy) { auto* data_d_ddy = ctx.template Alloc(out_tensor_d_ddy); auto* data_dout = in_tensor_dout->data(); auto* data_d_dx = in_tensor_d_dx->data(); auto* data_x = in_tensor_x->data(); auto* data_d_ddout = in_tensor_d_ddout->data(); const DDim& dim = out_tensor_d_ddy->dims(); size_t N = static_cast(product(dim)); auto step = dim[dim.size() - 1]; int s = -1; for (size_t i = 0; i < N; ++i) { if (0 == i % step) ++s; data_d_ddy[i] = T(data_dout[s].real, -data_dout[s].imag) * data_d_dx[i] + T(data_x[i].real, -data_x[i].imag) * data_d_ddout[s]; } } #endif } }; template struct DotTripleGradFunction> { void operator()(const DeviceContext& ctx, const DenseTensor* in_tensor_x, const DenseTensor* in_tensor_y, const DenseTensor* in_tensor_ddx, const DenseTensor* in_tensor_ddy, const DenseTensor* in_tensor_d_dx, const DenseTensor* in_tensor_d_dy, const DenseTensor* in_tensor_dout, const DenseTensor* in_tensor_d_ddout, DenseTensor* out_tensor_d_x, DenseTensor* out_tensor_d_y, DenseTensor* out_tensor_d_dout, DenseTensor* out_tensor_d_ddx, DenseTensor* out_tensor_d_ddy) { #if defined(__NVCC__) || defined(__HIPCC__) if (1 == in_tensor_d_ddout->dims().size()) { auto& dev = *ctx.eigen_device(); auto d_ddout = EigenVector::Flatten(*in_tensor_d_ddout); if (out_tensor_d_x) { ctx.template Alloc(out_tensor_d_x); auto ddy = EigenVector::Flatten(*in_tensor_ddy); Eigen::DSizes size(in_tensor_ddy->numel()); auto d_x = EigenVector::Flatten(*out_tensor_d_x); d_x.device(dev) = ddy * d_ddout.broadcast(size); } if (out_tensor_d_y) { ctx.template Alloc(out_tensor_d_y); auto ddx = EigenVector::Flatten(*in_tensor_ddx); Eigen::DSizes size(in_tensor_ddx->numel()); auto d_y = EigenVector::Flatten(*out_tensor_d_y); d_y.device(dev) = ddx * d_ddout.broadcast(size); } if (out_tensor_d_dout) { ctx.template Alloc(out_tensor_d_dout); auto ddx = EigenVector::Flatten(*in_tensor_ddx); auto ddy = EigenVector::Flatten(*in_tensor_ddy); auto d_dx = EigenVector::Flatten(*in_tensor_d_dx); auto d_dy = EigenVector::Flatten(*in_tensor_d_dy); auto d_dout = EigenVector::Flatten(*out_tensor_d_dout); d_dout.device(dev) = (ddx * d_dy + ddy * d_dx).sum(); } if (out_tensor_d_ddx) { ctx.template Alloc(out_tensor_d_ddx); auto dout = EigenVector::Flatten(*in_tensor_dout); auto y = EigenVector::Flatten(*in_tensor_y); auto d_ddout = EigenVector::Flatten(*in_tensor_d_ddout); auto d_dy = EigenVector::Flatten(*in_tensor_d_dy); auto d_ddx = EigenVector::Flatten(*out_tensor_d_ddx); Eigen::DSizes size(in_tensor_y->numel()); d_ddx.device(dev) = (dout.broadcast(size) * d_dy + y * d_ddout.broadcast(size)); } if (out_tensor_d_ddy) { ctx.template Alloc(out_tensor_d_ddy); auto dout = EigenVector::Flatten(*in_tensor_dout); auto x = EigenVector::Flatten(*in_tensor_x); auto d_ddout = EigenVector::Flatten(*in_tensor_d_ddout); auto d_dx = EigenVector::Flatten(*in_tensor_d_dx); auto d_ddy = EigenVector::Flatten(*out_tensor_d_ddy); Eigen::DSizes size(in_tensor_x->numel()); d_ddy.device(dev) = (dout.broadcast(size) * d_dx + x * d_ddout.broadcast(size)); } } #else const auto* data_d_ddout = in_tensor_d_ddout->data(); if (out_tensor_d_x) { auto* data_d_x = ctx.template Alloc(out_tensor_d_x); const auto* data_ddy = in_tensor_ddy->data(); const DDim& dim = out_tensor_d_x->dims(); size_t N = static_cast(product(dim)); auto step = dim[dim.size() - 1]; int s = -1; for (size_t i = 0; i < N; ++i) { if (0 == i % step) ++s; data_d_x[i] = data_ddy[i] * data_d_ddout[s]; } } if (out_tensor_d_y) { auto* data_d_y = ctx.template Alloc(out_tensor_d_y); const auto* data_ddx = in_tensor_ddx->data(); const DDim& dim = out_tensor_d_y->dims(); size_t N = static_cast(product(dim)); auto step = dim[dim.size() - 1]; int s = -1; for (size_t i = 0; i < N; ++i) { if (0 == i % step) ++s; data_d_y[i] = data_ddx[i] * data_d_ddout[s]; } } if (out_tensor_d_dout) { auto* data_d_dout = ctx.template Alloc(out_tensor_d_dout); auto* data_ddx = in_tensor_ddx->data(); auto* data_ddy = in_tensor_ddy->data(); auto* data_d_dx = in_tensor_d_dx->data(); auto* data_d_dy = in_tensor_d_dy->data(); const DDim& dim = in_tensor_ddx->dims(); size_t N = static_cast(product(dim)); auto step = dim[dim.size() - 1]; int s = -1; bool new_s = false; for (size_t i = 0; i < N; ++i) { if (0 == i % step) { ++s; new_s = true; } if (new_s) { data_d_dout[s] = data_ddy[i] * data_d_dx[i] + data_ddx[i] * data_d_dy[i]; } else { data_d_dout[s] += data_ddy[i] * data_d_dx[i] + data_ddx[i] * data_d_dy[i]; } new_s = false; } } if (out_tensor_d_ddx) { auto* data_d_ddx = ctx.template Alloc(out_tensor_d_ddx); auto* data_dout = in_tensor_dout->data(); auto* data_d_dy = in_tensor_d_dy->data(); auto* data_y = in_tensor_y->data(); auto* data_d_ddout = in_tensor_d_ddout->data(); const DDim& dim = out_tensor_d_ddx->dims(); size_t N = static_cast(product(dim)); auto step = dim[dim.size() - 1]; int s = -1; for (size_t i = 0; i < N; ++i) { if (0 == i % step) ++s; data_d_ddx[i] = data_dout[s] * data_d_dy[i] + data_y[i] * data_d_ddout[s]; } } if (out_tensor_d_ddy) { auto* data_d_ddy = ctx.template Alloc(out_tensor_d_ddy); auto* data_dout = in_tensor_dout->data(); auto* data_d_dx = in_tensor_d_dx->data(); auto* data_x = in_tensor_x->data(); auto* data_d_ddout = in_tensor_d_ddout->data(); const DDim& dim = out_tensor_d_ddy->dims(); size_t N = static_cast(product(dim)); auto step = dim[dim.size() - 1]; int s = -1; for (size_t i = 0; i < N; ++i) { if (0 == i % step) ++s; data_d_ddy[i] = data_dout[s] * data_d_dx[i] + data_x[i] * data_d_ddout[s]; } } #endif } }; template void DotGradKernel(const Context& dev_ctx, const DenseTensor& x, const DenseTensor& y, const DenseTensor& dout, DenseTensor* dx, DenseTensor* dy) { if (dx) { dev_ctx.template Alloc(dx); } if (dy) { dev_ctx.template Alloc(dy); } DotGradFunction()(dev_ctx, &x, &y, &dout, dx, dy); } template void DotDoubleGradKernel(const Context& dev_ctx, const DenseTensor& x, const DenseTensor& y, const DenseTensor& ddx, const DenseTensor& ddy, const DenseTensor& dout, DenseTensor* dx, DenseTensor* dy, DenseTensor* ddout) { if (dx) { dev_ctx.template Alloc(dx); } if (dy) { dev_ctx.template Alloc(dy); } if (ddout) { dev_ctx.template Alloc(ddout); } DotDoubleGradFunction()( dev_ctx, &x, &y, &dout, ddx, ddy, dx, dy, ddout); } template void DotTripleGradKernel(const Context& dev_ctx, const DenseTensor& x, const DenseTensor& y, const DenseTensor& ddx, const DenseTensor& ddy, const DenseTensor& d_dx, const DenseTensor& d_dy, const DenseTensor& dout, const DenseTensor& d_ddout, DenseTensor* d_x, DenseTensor* d_y, DenseTensor* d_ddx, DenseTensor* d_ddy, DenseTensor* d_dout) { if (d_x) { dev_ctx.template Alloc(d_x); } if (d_y) { dev_ctx.template Alloc(d_y); } if (d_ddx) { dev_ctx.template Alloc(d_ddx); } if (d_ddy) { dev_ctx.template Alloc(d_ddy); } if (d_dout) { dev_ctx.template Alloc(d_dout); } DotTripleGradFunction()(dev_ctx, &x, &y, ddx, ddy, d_dx, d_dy, dout, d_ddout, d_x, d_y, d_dout, d_ddx, d_ddy); } } // namespace phi