/* Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. */ #pragma once #include #include #include "paddle/pten/common/scalar.h" #include "paddle/pten/common/scalar_array.h" #include "paddle/pten/core/enforce.h" #include "paddle/pten/core/macros.h" #include "paddle/pten/core/meta_tensor.h" #include "paddle/pten/core/type_defs.h" #include "paddle/utils/flat_hash_map.h" #include "paddle/utils/small_vector.h" namespace pten { class InferMetaContext { public: InferMetaContext() = default; explicit InferMetaContext(MetaConfig config) : config_(config) {} void SetMetaConfig(MetaConfig config); void EmplaceBackInput(std::shared_ptr input); void EmplaceBackOutput(std::shared_ptr output); void EmplaceBackAttr(paddle::any attr); void EmplaceBackInputs( paddle::SmallVector> inputs); void EmplaceBackOutputs( paddle::SmallVector> outputs); const std::pair& InputRangeAt(size_t idx) const; const std::pair& OutputRangeAt(size_t idx) const; const MetaConfig& GetMetaConfig() const; const MetaTensor& InputAt(size_t idx) const; std::vector InputsBetween(size_t start, size_t end) const; MetaTensor* MutableOutputAt(size_t idx); template AttrType AttrAt(size_t idx) { try { return paddle::any_cast(attrs_.at(idx)); } catch (paddle::bad_any_cast&) { PADDLE_THROW(pten::errors::InvalidArgument( "Attribute cast error in InferMeta Context.")); } } private: MetaConfig config_; // NOTE(chenweihang): Because the MetaTensor is a base class, and MetaTensor // objects are all created in each round, so we have to use smart pointer // here, maybe we can implemented a new InferMetaContext and a series utils // specifically for fluid to avoid using shared_ptr paddle::SmallVector> inputs_; paddle::SmallVector> outputs_; paddle::SmallVector attrs_; paddle::SmallVector> input_range_; paddle::SmallVector> output_range_; }; #define PT_INFER_META(...) \ ::pten::InferMetaFnImpl::Call #define PT_SPECIALIZE_InferMetaFnCallHelper_FOR_ATTRIBUTE(attr_type) \ template \ struct InferMetaFnCallHelper { \ template \ static void Call(InferMetaContext* ctx, PreviousArgs&... pargs) { \ static_assert(out_idx == 0, \ "InferMeta's Attributes should appear before Outputs."); \ attr_type arg = ctx->AttrAt(attr_idx); \ InferMetaFnCallHelper< \ Tail...>::template Call(ctx, \ pargs..., \ arg); \ } \ } template struct InferMetaTypeTag {}; template struct InferMetaFnImpl; template struct InferMetaFnImpl { static void Call(InferMetaContext* ctx) { InferMetaFnCallHelper>::template Call<0, 0, 0>(ctx); } private: template struct InferMetaFnCallHelper; template struct InferMetaFnCallHelper { template static void Call(InferMetaContext* ctx, PreviousArgs&... pargs) { static_assert(attr_idx == 0, "InferMeta's Input should appear before Attributes."); static_assert(out_idx == 0, "InferMeta's Input should appear before Outputs."); const std::pair range = ctx->InputRangeAt(in_idx); const MetaTensor& arg = ctx->InputAt(range.first); InferMetaFnCallHelper< Tail...>::template Call(ctx, pargs..., arg); } }; template struct InferMetaFnCallHelper&, Tail...> { template static void Call(InferMetaContext* ctx, PreviousArgs&... pargs) { static_assert(attr_idx == 0, "InferMeta's Input should appear before Attributes."); static_assert(out_idx == 0, "InferMeta's Input should appear before Outputs."); const std::pair range = ctx->InputRangeAt(in_idx); std::vector arg = ctx->InputsBetween(range.first, range.second); InferMetaFnCallHelper< Tail...>::template Call(ctx, pargs..., arg); } }; PT_SPECIALIZE_InferMetaFnCallHelper_FOR_ATTRIBUTE(bool); PT_SPECIALIZE_InferMetaFnCallHelper_FOR_ATTRIBUTE(int); PT_SPECIALIZE_InferMetaFnCallHelper_FOR_ATTRIBUTE(int64_t); PT_SPECIALIZE_InferMetaFnCallHelper_FOR_ATTRIBUTE(float); PT_SPECIALIZE_InferMetaFnCallHelper_FOR_ATTRIBUTE(double); PT_SPECIALIZE_InferMetaFnCallHelper_FOR_ATTRIBUTE(const std::vector&); PT_SPECIALIZE_InferMetaFnCallHelper_FOR_ATTRIBUTE( const std::vector&); PT_SPECIALIZE_InferMetaFnCallHelper_FOR_ATTRIBUTE(DataType); PT_SPECIALIZE_InferMetaFnCallHelper_FOR_ATTRIBUTE(Backend); PT_SPECIALIZE_InferMetaFnCallHelper_FOR_ATTRIBUTE(DataLayout); PT_SPECIALIZE_InferMetaFnCallHelper_FOR_ATTRIBUTE(const Scalar&); PT_SPECIALIZE_InferMetaFnCallHelper_FOR_ATTRIBUTE(const ScalarArray&); // TODO(chenweihang): support vector input later template struct InferMetaFnCallHelper { template static void Call(InferMetaContext* ctx, PreviousArgs&... pargs) { const std::pair range = ctx->OutputRangeAt(out_idx); MetaTensor* arg = ctx->MutableOutputAt(range.first); InferMetaFnCallHelper< Tail...>::template Call(ctx, pargs..., arg); } }; // TODO(chenweihang): support vector output later template struct InferMetaFnCallHelper { template static void Call(InferMetaContext* ctx, PreviousArgs&... pargs) { MetaConfig arg = ctx->GetMetaConfig(); InferMetaFnCallHelper::template Call( ctx, pargs..., arg); } }; /* End case */ template struct InferMetaFnCallHelper> { template static void Call(InferMetaContext* ctx, Args&... args) { return infer_meta_fn(args...); } }; }; class MetaFnFactory { public: static MetaFnFactory& Instance(); bool Contains(const std::string& kernel_name_prefix) const { return meta_fn_map_.count(kernel_name_prefix) > 0; } void Insert(std::string kernel_name_prefix, InferMetaFn infer_meta_fn) { PADDLE_ENFORCE_NE( Contains(kernel_name_prefix), true, pten::errors::AlreadyExists( "`%s`'s Series Kernel's InferMetaFn has been registered.", kernel_name_prefix)); meta_fn_map_.insert( {std::move(kernel_name_prefix), std::move(infer_meta_fn)}); } const InferMetaFn& Get(const std::string& kernel_name_prefix) const { auto it = meta_fn_map_.find(kernel_name_prefix); PADDLE_ENFORCE_NE( it, meta_fn_map_.end(), pten::errors::NotFound( "`%s`'s Series Kernel's InferMetaFn is not registered.", kernel_name_prefix)); return it->second; } private: MetaFnFactory() = default; /** * [ Why use kernel name prefix? ] * * one op -> a matrix of kernels * * such as, scale op, it may correspond to the following kernels: * * - scale, scale_sr, scale_dnnl * - scale_raw, scale_raw_sr, scale_raw_dnnl * * All the kernels in each row correspond to the same infershape function, * the number of kernel arguments in the same row is the same, and only * the tensor types in the arguments are different. */ paddle::flat_hash_map meta_fn_map_; DISABLE_COPY_AND_ASSIGN(MetaFnFactory); }; struct InferMetaFnRegistrar { InferMetaFnRegistrar(const char* kernel_name_prefix, InferMetaFn infer_meta_fn) { MetaFnFactory::Instance().Insert(kernel_name_prefix, std::move(infer_meta_fn)); } }; #define PT_REGISTER_INFER_META_FN(kernel_name_prefix, variadic_infer_meta_fn) \ PT_STATIC_ASSERT_GLOBAL_NAMESPACE( \ pt_register_infer_meta_fn_ns_check_##kernel_name_prefix, \ "PT_REGISTER_INFER_META_FN must be called in global namespace."); \ static const ::pten::InferMetaFnRegistrar \ __registrar_arg_map_fn_for_##kernel_name_prefix( \ #kernel_name_prefix, PT_INFER_META(variadic_infer_meta_fn)) } // namespace pten