// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved. // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. #include "paddle/phi/kernels/mean_all_grad_kernel.h" #include "paddle/fluid/memory/memory.h" #include "paddle/phi/backends/xpu/enforce_xpu.h" #include "paddle/phi/core/kernel_registry.h" namespace phi { template void MeanAllGradKernel(const Context& dev_ctx, const DenseTensor& x, const DenseTensor& out_grad, DenseTensor* x_grad) { using XPUType = typename XPUTypeTrait::Type; auto OG = &out_grad; PADDLE_ENFORCE_EQ( OG->numel(), 1, phi::errors::InvalidArgument("Mean Gradient should be scalar")); auto IG = x_grad; dev_ctx.template Alloc(IG); XPUType* dx = reinterpret_cast(IG->data()); const T* dy = OG->data(); T dy0_value; xpu_wait(dev_ctx.x_context()->xpu_stream); paddle::memory::Copy(phi::CPUPlace(), &dy0_value, OG->place(), dy, sizeof(T)); float dy0_fp32 = static_cast(dy0_value); dy0_fp32 = dy0_fp32 / static_cast(IG->numel()); int r = xpu::constant( dev_ctx.x_context(), dx, IG->numel(), static_cast(dy0_fp32)); PADDLE_ENFORCE_XDNN_SUCCESS(r, "mean_all_grad"); } } // namespace phi PD_REGISTER_KERNEL(mean_all_grad, XPU, ALL_LAYOUT, phi::MeanAllGradKernel, float, phi::dtype::float16) {}