// Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved. // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. #include "paddle/fluid/operators/increment_op.h" #include namespace paddle { namespace framework { class InferShapeContext; class OpDesc; } // namespace framework namespace imperative { class OpBase; } // namespace imperative namespace platform { class CPUDeviceContext; struct CPUPlace; } // namespace platform } // namespace paddle namespace paddle { namespace operators { class IncrementOp : public framework::OperatorWithKernel { public: IncrementOp(const std::string &type, const framework::VariableNameMap &inputs, const framework::VariableNameMap &outputs, const framework::AttributeMap &attrs) : OperatorWithKernel(type, inputs, outputs, attrs) {} void InferShape(framework::InferShapeContext *ctx) const override { PADDLE_ENFORCE_EQ(framework::product(ctx->GetInputDim("X")), 1UL, platform::errors::InvalidArgument( "The number of elements in Input(X) should be 1." "Now the number is %d.", framework::product(ctx->GetInputDim("X")))); OP_INOUT_CHECK(ctx->HasInput("X"), "Input", "X", "increment"); OP_INOUT_CHECK(ctx->HasOutput("Out"), "Output", "Out", "increment"); ctx->SetOutputDim("Out", ctx->GetInputDim("X")); ctx->ShareLoD("X", "Out"); } protected: framework::OpKernelType GetExpectedKernelType( const framework::ExecutionContext &ctx) const override { framework::OpKernelType kt = OperatorWithKernel::GetExpectedKernelType(ctx); // IncrementOp kernel's device type is decided by input tensor place kt.place_ = ctx.Input("X")->place(); return kt; } }; class IncrementOpMaker : public framework::OpProtoAndCheckerMaker { public: void Make() override { AddInput("X", "(Tensor) The input tensor of increment operator"); AddOutput("Out", "(Tensor) The output tensor of increment operator."); AddAttr("step", "(float, default 1.0) " "The step size by which the " "input tensor will be incremented.") .SetDefault(1.0); AddComment(R"DOC( Increment Operator. The equation is: $$Out = X + step$$ )DOC"); } }; template class IncrementGradOpMaker : public framework::SingleGradOpMaker { public: using framework::SingleGradOpMaker::SingleGradOpMaker; void Apply(GradOpPtr grad_op) const override { grad_op->SetType("increment"); grad_op->SetInput("X", this->Output("Out")); grad_op->SetOutput("Out", this->Input("X")); grad_op->SetAttr("step", -BOOST_GET_CONST(float, this->GetAttr("step"))); } }; } // namespace operators } // namespace paddle namespace ops = paddle::operators; REGISTER_OPERATOR(increment, ops::IncrementOp, ops::IncrementOpMaker, ops::IncrementGradOpMaker, ops::IncrementGradOpMaker); REGISTER_OP_CPU_KERNEL( increment, ops::IncrementKernel, ops::IncrementKernel, ops::IncrementKernel, ops::IncrementKernel);