/* Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. */ #include "paddle/phi/kernels/truncated_gaussian_random_kernel.h" #include #include #include "paddle/fluid/memory/memcpy.h" #include "paddle/phi/backends/xpu/xpu_context.h" #include "paddle/phi/core/kernel_registry.h" #include "paddle/phi/kernels/funcs/truncated_normal.h" namespace phi { template void TruncatedGaussianRandomKernel(const Context& dev_ctx, const std::vector& shape, float mean, float std, int seed, DataType dtype, DenseTensor* out) { T* data = dev_ctx.template Alloc(out); std::uniform_real_distribution dist(std::numeric_limits::min(), 1.0); TruncatedNormal truncated_normal(mean, std); int64_t size = out->numel(); std::unique_ptr data_cpu(new T[size]); std::shared_ptr engine; if (seed) { engine = std::make_shared(); engine->seed(seed); } else { engine = dev_ctx.GetGenerator()->GetCPUEngine(); } for (int64_t i = 0; i < size; ++i) { data_cpu[i] = truncated_normal(dist(*engine)); } paddle::memory::Copy(dev_ctx.GetPlace(), data, phi::CPUPlace(), reinterpret_cast(data_cpu.get()), size * sizeof(T)); } } // namespace phi PD_REGISTER_KERNEL(truncated_gaussian_random, XPU, ALL_LAYOUT, phi::TruncatedGaussianRandomKernel, float) {}