# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from __future__ import print_function
import os
import io
import tarfile
import numpy as np
from PIL import Image
import paddle
from paddle.io import Dataset
from paddle.utils import try_import
from paddle.dataset.common import _check_exists_and_download
__all__ = []
DATA_URL = 'http://paddlemodels.bj.bcebos.com/flowers/102flowers.tgz'
LABEL_URL = 'http://paddlemodels.bj.bcebos.com/flowers/imagelabels.mat'
SETID_URL = 'http://paddlemodels.bj.bcebos.com/flowers/setid.mat'
DATA_MD5 = '52808999861908f626f3c1f4e79d11fa'
LABEL_MD5 = 'e0620be6f572b9609742df49c70aed4d'
SETID_MD5 = 'a5357ecc9cb78c4bef273ce3793fc85c'
# In official 'readme', tstid is the flag of test data
# and trnid is the flag of train data. But test data is more than train data.
# So we exchange the train data and test data.
MODE_FLAG_MAP = {'train': 'tstid', 'test': 'trnid', 'valid': 'valid'}
class Flowers(Dataset):
"""
Implementation of `Flowers102 `_
dataset.
Args:
data_file (str, optional): Path to data file, can be set None if
:attr:`download` is True. Default: None, default data path: ~/.cache/paddle/dataset/flowers/.
label_file (str, optional): Path to label file, can be set None if
:attr:`download` is True. Default: None, default data path: ~/.cache/paddle/dataset/flowers/.
setid_file (str, optional): Path to subset index file, can be set
None if :attr:`download` is True. Default: None, default data path: ~/.cache/paddle/dataset/flowers/.
mode (str, optional): Either train or test mode. Default 'train'.
transform (Callable, optional): transform to perform on image, None for no transform. Default: None.
download (bool, optional): download dataset automatically if :attr:`data_file` is None. Default: True.
backend (str, optional): Specifies which type of image to be returned:
PIL.Image or numpy.ndarray. Should be one of {'pil', 'cv2'}.
If this option is not set, will get backend from :ref:`paddle.vision.get_image_backend `,
default backend is 'pil'. Default: None.
Returns:
:ref:`api_paddle_io_Dataset`. An instance of Flowers dataset.
Examples:
.. code-block:: python
import itertools
import paddle.vision.transforms as T
from paddle.vision.datasets import Flowers
flowers = Flowers()
print(len(flowers))
# 6149
for i in range(5): # only show first 5 images
img, label = flowers[i]
# do something with img and label
print(type(img), img.size, label)
# (523, 500) [1]
transform = T.Compose(
[
T.Resize(64),
T.ToTensor(),
T.Normalize(
mean=[0.5, 0.5, 0.5],
std=[0.5, 0.5, 0.5],
to_rgb=True,
),
]
)
flowers_test = Flowers(
mode="test",
transform=transform, # apply transform to every image
backend="cv2", # use OpenCV as image transform backend
)
print(len(flowers_test))
# 1020
for img, label in itertools.islice(iter(flowers_test), 5): # only show first 5 images
# do something with img and label
print(type(img), img.shape, label)
# [3, 64, 96] [1]
"""
def __init__(self,
data_file=None,
label_file=None,
setid_file=None,
mode='train',
transform=None,
download=True,
backend=None):
assert mode.lower() in ['train', 'valid', 'test'], \
"mode should be 'train', 'valid' or 'test', but got {}".format(mode)
if backend is None:
backend = paddle.vision.get_image_backend()
if backend not in ['pil', 'cv2']:
raise ValueError(
"Expected backend are one of ['pil', 'cv2'], but got {}".format(
backend))
self.backend = backend
flag = MODE_FLAG_MAP[mode.lower()]
if not data_file:
assert download, "data_file is not set and downloading automatically is disabled"
data_file = _check_exists_and_download(data_file, DATA_URL,
DATA_MD5, 'flowers',
download)
if not label_file:
assert download, "label_file is not set and downloading automatically is disabled"
label_file = _check_exists_and_download(label_file, LABEL_URL,
LABEL_MD5, 'flowers',
download)
if not setid_file:
assert download, "setid_file is not set and downloading automatically is disabled"
setid_file = _check_exists_and_download(setid_file, SETID_URL,
SETID_MD5, 'flowers',
download)
self.transform = transform
data_tar = tarfile.open(data_file)
self.data_path = data_file.replace(".tgz", "/")
if not os.path.exists(self.data_path):
os.mkdir(self.data_path)
data_tar.extractall(self.data_path)
scio = try_import('scipy.io')
self.labels = scio.loadmat(label_file)['labels'][0]
self.indexes = scio.loadmat(setid_file)[flag][0]
def __getitem__(self, idx):
index = self.indexes[idx]
label = np.array([self.labels[index - 1]])
img_name = "jpg/image_%05d.jpg" % index
image = os.path.join(self.data_path, img_name)
if self.backend == 'pil':
image = Image.open(image)
elif self.backend == 'cv2':
image = np.array(Image.open(image))
if self.transform is not None:
image = self.transform(image)
if self.backend == 'pil':
return image, label.astype('int64')
return image.astype(paddle.get_default_dtype()), label.astype('int64')
def __len__(self):
return len(self.indexes)