/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. */ #pragma once #include "paddle/fluid/operators/elementwise_op_function.h" namespace paddle { namespace operators { template struct DivFunctor { inline HOSTDEVICE T operator()(T a, T b) const { return a / b; } }; template class ElementwiseDivKernel : public framework::OpKernel { public: void Compute(const framework::ExecutionContext& ctx) const override { using Tensor = framework::Tensor; auto* x = ctx.Input("X"); auto* y = ctx.Input("Y"); auto* z = ctx.Output("Out"); z->mutable_data(ctx.GetPlace()); int axis = ctx.Attr("axis"); ElementwiseComputeEx, DeviceContext, T>(ctx, x, y, axis, DivFunctor(), z); } }; template struct DivGradDX { HOSTDEVICE T operator()(T x, T y, T out, T dout) const { return dout / y; } }; template struct DivGradDY { HOSTDEVICE T operator()(T x, T y, T out, T dout) const { return -dout * x / (y * y); } }; template class ElementwiseDivGradKernel : public framework::OpKernel { public: void Compute(const framework::ExecutionContext& ctx) const override { using Tensor = framework::Tensor; auto* x = ctx.Input("X"); auto* y = ctx.Input("Y"); auto* out = ctx.Input("Out"); auto* dout = ctx.Input(framework::GradVarName("Out")); auto* dx = ctx.Output(framework::GradVarName("X")); auto* dy = ctx.Output(framework::GradVarName("Y")); int axis = ctx.Attr("axis"); ElemwiseGradCompute, DivGradDY>( ctx, *x, *y, *out, *dout, axis, dx, dy, DivGradDX(), DivGradDY()); } }; } // namespace operators } // namespace paddle