# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import unittest import paddle import paddle.vision.transforms as T from paddle import Model from paddle.metric import Accuracy from paddle.nn.layer.loss import CrossEntropyLoss from paddle.static import InputSpec from paddle.vision.datasets import MNIST from paddle.vision.models import LeNet # Accelerate unittest class CustomMnist(MNIST): def __len__(self): return 8 class TestReduceLROnPlateau(unittest.TestCase): def test_reduce_lr_on_plateau(self): transform = T.Compose([T.Transpose(), T.Normalize([127.5], [127.5])]) train_dataset = CustomMnist(mode='train', transform=transform) val_dataset = CustomMnist(mode='test', transform=transform) net = LeNet() optim = paddle.optimizer.Adam( learning_rate=0.001, parameters=net.parameters() ) inputs = [InputSpec([None, 1, 28, 28], 'float32', 'x')] labels = [InputSpec([None, 1], 'int64', 'label')] model = Model(net, inputs=inputs, labels=labels) model.prepare(optim, loss=CrossEntropyLoss(), metrics=[Accuracy()]) callbacks = paddle.callbacks.ReduceLROnPlateau( patience=1, verbose=1, cooldown=1 ) model.fit( train_dataset, val_dataset, batch_size=8, log_freq=1, save_freq=10, epochs=10, callbacks=[callbacks], ) def test_warn_or_error(self): with self.assertRaises(ValueError): paddle.callbacks.ReduceLROnPlateau(factor=2.0) # warning paddle.callbacks.ReduceLROnPlateau(mode='1', patience=3, verbose=1) transform = T.Compose([T.Transpose(), T.Normalize([127.5], [127.5])]) train_dataset = CustomMnist(mode='train', transform=transform) val_dataset = CustomMnist(mode='test', transform=transform) net = LeNet() optim = paddle.optimizer.Adam( learning_rate=0.001, parameters=net.parameters() ) inputs = [InputSpec([None, 1, 28, 28], 'float32', 'x')] labels = [InputSpec([None, 1], 'int64', 'label')] model = Model(net, inputs=inputs, labels=labels) model.prepare(optim, loss=CrossEntropyLoss(), metrics=[Accuracy()]) callbacks = paddle.callbacks.ReduceLROnPlateau( monitor='miou', patience=3, verbose=1 ) model.fit( train_dataset, val_dataset, batch_size=8, log_freq=1, save_freq=10, epochs=1, callbacks=[callbacks], ) optim = paddle.optimizer.Adam( learning_rate=paddle.optimizer.lr.PiecewiseDecay( [0.001, 0.0001], [5, 10] ), parameters=net.parameters(), ) model.prepare(optim, loss=CrossEntropyLoss(), metrics=[Accuracy()]) callbacks = paddle.callbacks.ReduceLROnPlateau( monitor='acc', mode='max', patience=3, verbose=1, cooldown=1 ) model.fit( train_dataset, val_dataset, batch_size=8, log_freq=1, save_freq=10, epochs=3, callbacks=[callbacks], ) if __name__ == '__main__': unittest.main()