// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved. // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. #pragma once #include // NOLINT #include "paddle/fluid/platform/dynload/cublas.h" #include "paddle/fluid/platform/enforce.h" #include "paddle/fluid/platform/macros.h" namespace paddle { namespace platform { /* * Summary: Grid stride looping macro in CUDA kernel * * [ Why need this macro? ] * * The original looping in CUDA kernel is: * * `for (int i = blockIdx.x * blockDim.x + threadIdx.x; i < (n); \ * i += blockDim.x * gridDim.x)` * * This for condition is risky. The value of `blockIdx.x * blockDim.x` * may be large, such as over 1GB, the first iteration is no problem here, * but when `i += blockDim.x * gridDim.x` is executed, the value of i * will greater than INT_MAX and overflow becomes negative value, at * this time, the cycle condition `i < (n)` is still satisfied, so it * will cause illegal access to cuda memory. * * Here is a real example in ERINE, it will trigger above error. * The related data are: * - blockIdx.x = 2172938 * - blockDim.x = 512 * - blockIdx.x * blockDim.x = 1112543864 * - INT_MAX = 2147483647 * * So we polish the for condition as follow, the int64_t __index__ will * prevent overflow in the loop increment. * * Parameters: * - i: loop index * - num: total element numbers * * Examples: * template * __global__ void Scale(T* logit_grad, const T* loss_grad, const int num, * const int d, const int remain) { * CUDA_KERNEL_LOOP(index, num) { * int idx_n = index / d; * int idx_remain = index % remain; * logit_grad[index] *= loss_grad[idx_n * remain + idx_remain]; * } * } * */ #define CUDA_KERNEL_LOOP_TYPE(i, num, index_type) \ int64_t __index__ = blockIdx.x * blockDim.x + threadIdx.x; \ for (index_type i = __index__; __index__ < (num); \ __index__ += blockDim.x * gridDim.x, i = __index__) class CublasHandleHolder { public: CublasHandleHolder(cudaStream_t stream, cublasMath_t math_type) { PADDLE_RETRY_CUDA_SUCCESS(dynload::cublasCreate(&handle_)); PADDLE_RETRY_CUDA_SUCCESS(dynload::cublasSetStream(handle_, stream)); #if CUDA_VERSION >= 9000 if (math_type == CUBLAS_TENSOR_OP_MATH) { PADDLE_RETRY_CUDA_SUCCESS( dynload::cublasSetMathMode(handle_, CUBLAS_TENSOR_OP_MATH)); #if CUDA_VERSION >= 11000 } else if (math_type == CUBLAS_TF32_TENSOR_OP_MATH) { PADDLE_RETRY_CUDA_SUCCESS( dynload::cublasSetMathMode(handle_, CUBLAS_TF32_TENSOR_OP_MATH)); #endif // CUDA_VERSION >= 11000 } #endif // CUDA_VERSION >= 9000 } const cublasHandle_t& GetCublasHandle() const { return handle_; } ~CublasHandleHolder() PADDLE_MAY_THROW { PADDLE_RETRY_CUDA_SUCCESS(dynload::cublasDestroy(handle_)); } template inline void Call(Callback&& callback) const { std::lock_guard guard(mtx_); callback(handle_); } private: DISABLE_COPY_AND_ASSIGN(CublasHandleHolder); cublasHandle_t handle_; mutable std::mutex mtx_; }; } // namespace platform } // namespace paddle