/* Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. */ #ifdef __NVCC__ #include "cub/cub.cuh" #endif #ifdef __HIPCC__ #include namespace cub = hipcub; #endif #include #include "paddle/fluid/memory/memcpy.h" #include "paddle/fluid/operators/detection/bbox_util.h" #include "paddle/fluid/operators/detection/distribute_fpn_proposals_op.h" #include "paddle/fluid/operators/gather.cu.h" #include "paddle/fluid/platform/device/gpu/gpu_primitives.h" #include "paddle/fluid/platform/for_range.h" #include "paddle/phi/kernels/funcs/math_function.h" namespace paddle { namespace operators { using Tensor = framework::Tensor; using LoDTensor = framework::LoDTensor; static constexpr int kNumCUDAThreads = 64; static constexpr int kNumMaxinumNumBlocks = 4096; int const BBoxSize = 4; static inline int NumBlocks(const int N) { return std::min((N + kNumCUDAThreads - 1) / kNumCUDAThreads, kNumMaxinumNumBlocks); } template __global__ void GPUDistFpnProposalsHelper( const int nthreads, const T* rois, const int lod_size, const int refer_level, const int refer_scale, const int max_level, const int min_level, int* roi_batch_id_data, int* sub_lod_list, int* target_lvls, bool pixel_offset = true) { CUDA_KERNEL_LOOP(i, nthreads) { const T* offset_roi = rois + i * BBoxSize; int roi_batch_ind = roi_batch_id_data[i]; // get the target level of current rois T roi_area = RoIArea(offset_roi, pixel_offset); T roi_scale = sqrt(roi_area); int tgt_lvl = floor( log2(roi_scale / static_cast(refer_scale) + (T)1e-8) + refer_level); tgt_lvl = min(max_level, max(tgt_lvl, min_level)); target_lvls[i] = tgt_lvl; // compute number of rois in the same batch and same target level platform::CudaAtomicAdd( sub_lod_list + (tgt_lvl - min_level) * lod_size + roi_batch_ind, 1); } } template class GPUDistributeFpnProposalsOpKernel : public framework::OpKernel { public: void Compute(const framework::ExecutionContext& ctx) const override { auto* fpn_rois = ctx.Input("FpnRois"); auto multi_fpn_rois = ctx.MultiOutput("MultiFpnRois"); auto* restore_index = ctx.Output("RestoreIndex"); const int min_level = ctx.Attr("min_level"); const int max_level = ctx.Attr("max_level"); const int refer_level = ctx.Attr("refer_level"); const int refer_scale = ctx.Attr("refer_scale"); const bool pixel_offset = ctx.Attr("pixel_offset"); int num_level = max_level - min_level + 1; // check that the fpn_rois is not empty if (!ctx.HasInput("RoisNum")) { PADDLE_ENFORCE_EQ( fpn_rois->lod().size(), 1UL, platform::errors::InvalidArgument("DistributeFpnProposalsOp needs LoD" "with one level")); } std::vector fpn_rois_lod; if (ctx.HasInput("RoisNum")) { auto* rois_num = ctx.Input("RoisNum"); fpn_rois_lod = GetLodFromRoisNum(rois_num); } else { fpn_rois_lod = fpn_rois->lod().back(); } int lod_size = fpn_rois_lod.size() - 1; int roi_num = fpn_rois_lod[lod_size]; auto& dev_ctx = ctx.template device_context(); // get batch id by lod in CPU Tensor roi_batch_id_list; roi_batch_id_list.Resize({roi_num}); int* roi_batch_id_data = roi_batch_id_list.mutable_data(platform::CPUPlace()); for (int n = 0; n < lod_size; ++n) { for (size_t i = fpn_rois_lod[n]; i < fpn_rois_lod[n + 1]; ++i) { roi_batch_id_data[i] = n; } } // copy batch id list to GPU Tensor roi_batch_id_list_gpu; framework::TensorCopySync(roi_batch_id_list, dev_ctx.GetPlace(), &roi_batch_id_list_gpu); Tensor sub_lod_list; sub_lod_list.Resize({num_level, lod_size}); int* sub_lod_list_data = sub_lod_list.mutable_data(dev_ctx.GetPlace()); phi::funcs::SetConstant set_zero; set_zero(dev_ctx, &sub_lod_list, static_cast(0)); Tensor target_lvls; target_lvls.Resize({roi_num}); int* target_lvls_data = target_lvls.mutable_data(dev_ctx.GetPlace()); int dist_blocks = NumBlocks(roi_num); int threads = kNumCUDAThreads; // get target levels and sub_lod list GPUDistFpnProposalsHelper<<>>( roi_num, fpn_rois->data(), lod_size, refer_level, refer_scale, max_level, min_level, roi_batch_id_list_gpu.data(), sub_lod_list_data, target_lvls_data, pixel_offset); auto place = dev_ctx.GetPlace(); Tensor index_in_t; int* idx_in = index_in_t.mutable_data({roi_num}, dev_ctx.GetPlace()); platform::ForRange for_range(dev_ctx, roi_num); for_range(RangeInitFunctor{0, 1, idx_in}); Tensor keys_out_t; int* keys_out = keys_out_t.mutable_data({roi_num}, dev_ctx.GetPlace()); Tensor index_out_t; int* idx_out = index_out_t.mutable_data({roi_num}, dev_ctx.GetPlace()); // Determine temporary device storage requirements size_t temp_storage_bytes = 0; cub::DeviceRadixSort::SortPairs( nullptr, temp_storage_bytes, target_lvls_data, keys_out, idx_in, idx_out, roi_num, 0, sizeof(int) * 8, dev_ctx.stream()); // Allocate temporary storage auto d_temp_storage = memory::Alloc(place, temp_storage_bytes); // Run sorting operation // sort target level to get corresponding index cub::DeviceRadixSort::SortPairs( d_temp_storage->ptr(), temp_storage_bytes, target_lvls_data, keys_out, idx_in, idx_out, roi_num, 0, sizeof(int) * 8, dev_ctx.stream()); int* restore_idx_data = restore_index->mutable_data({roi_num, 1}, dev_ctx.GetPlace()); // sort current index to get restore index cub::DeviceRadixSort::SortPairs( d_temp_storage->ptr(), temp_storage_bytes, idx_out, keys_out, idx_in, restore_idx_data, roi_num, 0, sizeof(int) * 8, dev_ctx.stream()); int start = 0; auto multi_rois_num = ctx.MultiOutput("MultiLevelRoIsNum"); std::vector sub_lod_list_cpu(lod_size * num_level); memory::Copy(platform::CPUPlace(), sub_lod_list_cpu.data(), place, sub_lod_list_data, sizeof(int) * lod_size * num_level, dev_ctx.stream()); dev_ctx.Wait(); for (int i = 0; i < num_level; ++i) { Tensor sub_lod = sub_lod_list.Slice(i, i + 1); // transfer length-based lod to offset-based lod std::vector offset(1, 0); for (int j = 0; j < lod_size; ++j) { offset.emplace_back(offset.back() + sub_lod_list_cpu[i * lod_size + j]); } int sub_rois_num = offset.back(); int end = start + sub_rois_num; if (end > start) { Tensor sub_idx = index_out_t.Slice(start, end); start = end; multi_fpn_rois[i]->mutable_data({sub_rois_num, kBoxDim}, dev_ctx.GetPlace()); GPUGather(dev_ctx, *fpn_rois, sub_idx, multi_fpn_rois[i]); } else { multi_fpn_rois[i]->mutable_data({sub_rois_num, kBoxDim}, dev_ctx.GetPlace()); } if (multi_rois_num.size() > 0) { Tensor* rois_num_t = multi_rois_num[i]; paddle::framework::TensorCopySync(sub_lod, dev_ctx.GetPlace(), rois_num_t); rois_num_t->Resize({lod_size}); } framework::LoD lod; lod.emplace_back(offset); multi_fpn_rois[i]->set_lod(lod); } } }; } // namespace operators } // namespace paddle namespace ops = paddle::operators; REGISTER_OP_CUDA_KERNEL( distribute_fpn_proposals, ops::GPUDistributeFpnProposalsOpKernel, ops::GPUDistributeFpnProposalsOpKernel);