// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved. // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. #include "paddle/fluid/framework/ir/mkldnn/cpu_quantize_pass.h" #include #include #include #include "paddle/fluid/framework/eigen.h" #include "paddle/fluid/platform/errors.h" #include "paddle/fluid/string/pretty_log.h" namespace paddle { namespace framework { namespace ir { namespace { void UnlinkNodes(ir::Node* a, ir::Node* b) { a->outputs.erase(std::remove(a->outputs.begin(), a->outputs.end(), b), a->outputs.end()); b->inputs.erase(std::remove(b->inputs.begin(), b->inputs.end(), a), b->inputs.end()); } } // namespace enum { U8_MAX = 255, S8_MAX = 127 }; using EigenVectorArrayMap = Eigen::Map>; using string::PrettyLogDetail; void CPUQuantizePass::QuantizeInput(Graph* g, Node* op, Node* input, std::string input_name, double scale_to_one, bool is_unsigned, std::string scale_attr_name) const { auto inputs = op->Op()->InputNames(); bool name_found = std::find(inputs.begin(), inputs.end(), input_name) != inputs.end(); PADDLE_ENFORCE_EQ( name_found, true, platform::errors::InvalidArgument("%s isn't the input of the %s operator", input_name, op->Op()->Type())); unsigned max = is_unsigned ? U8_MAX : S8_MAX; float scale = scale_to_one * max; // Create quantize output variable VarDesc quantize_out_desc(patterns::PDNodeName("quantize", "out")); auto* quantize_out_node = g->CreateVarNode(&quantize_out_desc); // create a quantize op node OpDesc q_desc; q_desc.SetType("quantize"); q_desc.SetInput("Input", std::vector({input->Name()})); q_desc.SetOutput("Output", std::vector({quantize_out_node->Name()})); q_desc.SetAttr("Scale", scale); q_desc.SetAttr("is_negative_input", !is_unsigned); auto quantize_op = g->CreateOpNode(&q_desc); // OpDesc will be copied. // update op's input op->Op()->SetInput(input_name, std::vector({quantize_out_node->Name()})); // link quantize op UnlinkNodes(input, op); IR_NODE_LINK_TO(input, quantize_op); IR_NODE_LINK_TO(quantize_op, quantize_out_node); IR_NODE_LINK_TO(quantize_out_node, op); if (!scale_attr_name.empty()) op->Op()->SetAttr(scale_attr_name, scale); } void CPUQuantizePass::QuantizeInputs(Graph* g, Node* op, std::string input_name, VarQuantScale* scales, bool are_unsigned, std::string scale_attr_name) const { auto inputs = op->inputs; auto output = op->outputs[0]; PADDLE_ENFORCE_GE(inputs.size(), 1); PADDLE_ENFORCE_EQ(op->outputs.size(), 1); // create a quantize op desc prototype OpDesc q_desc; q_desc.SetType("quantize"); std::vector quantize_out_nodes(inputs.size()); std::vector quantize_out_node_names(inputs.size()); double scale_out = (*scales)[output->Name()].second.data()[0]; unsigned max = are_unsigned ? U8_MAX : S8_MAX; float scale = scale_out * max; for (size_t i = 0; i < inputs.size(); i++) { // Create quantize output variable VarDesc quantize_out_desc(patterns::PDNodeName("quantize", "out")); quantize_out_nodes[i] = g->CreateVarNode(&quantize_out_desc); quantize_out_node_names[i] = quantize_out_nodes[i]->Name(); q_desc.SetAttr("Scale", scale); q_desc.SetInput("Input", std::vector({inputs[i]->Name()})); q_desc.SetOutput("Output", std::vector({quantize_out_node_names[i]})); q_desc.SetAttr("is_negative_input", !are_unsigned); auto quantize_op = g->CreateOpNode(&q_desc); // OpDesc will be copied. // link quantize op UnlinkNodes(inputs[i], op); IR_NODE_LINK_TO(inputs[i], quantize_op); IR_NODE_LINK_TO(quantize_op, quantize_out_nodes[i]); IR_NODE_LINK_TO(quantize_out_nodes[i], op); } // update op's input op->Op()->SetInput(input_name, quantize_out_node_names); if (!scale_attr_name.empty()) op->Op()->SetAttr(scale_attr_name, scale); } void CPUQuantizePass::DequantizeOutput(Graph* g, Node* op, Node* output, std::string output_name, double scale_to_one, bool is_unsigned, std::string scale_attr_name) const { auto outputs = op->Op()->OutputNames(); bool name_found = std::find(outputs.begin(), outputs.end(), output_name) != outputs.end(); PADDLE_ENFORCE_EQ(name_found, true, platform::errors::InvalidArgument( "%s isn't the output of the %s operator", output_name, op->Op()->Type())); unsigned max = is_unsigned ? U8_MAX : S8_MAX; float scale = scale_to_one * max; // Create dequantize input variable VarDesc dequantize_in_desc(patterns::PDNodeName("dequantize", "in")); auto* dequantize_in_node = g->CreateVarNode(&dequantize_in_desc); // create a dequantize op node for output. OpDesc deq_desc; deq_desc.SetType("dequantize"); deq_desc.SetInput("Input", std::vector({dequantize_in_node->Name()})); deq_desc.SetOutput("Output", std::vector({output->Name()})); deq_desc.SetAttr("Scale", scale); auto dequantize_op = g->CreateOpNode(&deq_desc); // OpDesc will be copied. // update op's output op->Op()->SetOutput(output_name, std::vector({dequantize_in_node->Name()})); // link dequantize op UnlinkNodes(op, output); IR_NODE_LINK_TO(op, dequantize_in_node); IR_NODE_LINK_TO(dequantize_in_node, dequantize_op); IR_NODE_LINK_TO(dequantize_op, output); if (!scale_attr_name.empty()) op->Op()->SetAttr(scale_attr_name, scale); } void CPUQuantizePass::QuantizeConv(Graph* graph, bool with_residual_data) const { GraphPatternDetector gpd; auto pattern = gpd.mutable_pattern(); patterns::ConvResidual conv_pattern{pattern, name_scope_}; conv_pattern(with_residual_data); int quantize_conv_count = 0; auto handler = [&](const GraphPatternDetector::subgraph_t& subgraph, Graph* g) { VLOG(4) << "Quantize conv2d op"; GET_IR_NODE_FROM_SUBGRAPH(conv_op, conv_op, conv_pattern); auto* conv_op_desc = conv_op->Op(); // skip if should not be quantized if (!conv_op_desc->GetAttrIfExists("use_quantizer")) return; GET_IR_NODE_FROM_SUBGRAPH(conv_filter, conv_filter, conv_pattern); GET_IR_NODE_FROM_SUBGRAPH(conv_input, conv_input, conv_pattern); GET_IR_NODE_FROM_SUBGRAPH(conv_output, conv_output, conv_pattern); // get scales calculated after warmup, they scale variables to MAX=1.0 auto scales = Get("quant_var_scales"); auto input_scale = scales[conv_input->Name()].second.data()[0]; bool is_input_unsigned = scales[conv_input->Name()].first; QuantizeInput(g, conv_op, conv_input, "Input", input_scale, is_input_unsigned, "Scale_in"); auto filter_scale_tensor = scales[conv_filter->Name()].second; EigenVectorArrayMap eigen_tensor{filter_scale_tensor.data(), filter_scale_tensor.numel(), 1}; eigen_tensor *= static_cast(S8_MAX); std::vector filter_scale{ filter_scale_tensor.data(), filter_scale_tensor.data() + filter_scale_tensor.numel()}; conv_op->Op()->SetAttr("Scale_weights", filter_scale); if (with_residual_data) { GET_IR_NODE_FROM_SUBGRAPH(conv_residual_data, conv_residual_data, conv_pattern); auto residual_scale = scales[conv_residual_data->Name()].second.data()[0]; bool is_residual_unsigned = scales[conv_residual_data->Name()].first; QuantizeInput(g, conv_op, conv_residual_data, "ResidualData", residual_scale, is_residual_unsigned, "Scale_in_eltwise"); } auto output_scale = scales[conv_output->Name()].second.data()[0]; bool is_output_unsigned = scales[conv_output->Name()].first; DequantizeOutput(g, conv_op, conv_output, "Output", output_scale, is_output_unsigned, "Scale_out"); // change threshold in bounded ReLu if (conv_op->Op()->GetAttrIfExists("fuse_activation") == "relu6") { float scale_out = boost::get(conv_op->Op()->GetAttr("Scale_out")); float threshold = boost::get(conv_op->Op()->GetAttr("fuse_alpha")); conv_op->Op()->SetAttr("fuse_alpha", scale_out * threshold); } ++quantize_conv_count; }; gpd(graph, handler); AddStatis(quantize_conv_count); std::stringstream msg_ss; msg_ss << "--- quantized " << quantize_conv_count << " conv2d ops"; if (with_residual_data) msg_ss << " with residual connection"; PrettyLogDetail(msg_ss.str().c_str()); } void CPUQuantizePass::QuantizeFc(Graph* graph) const { GraphPatternDetector gpd; auto pattern = gpd.mutable_pattern(); patterns::FCMKLDNN fc_pattern{pattern, name_scope_}; auto* fc_input = gpd.mutable_pattern() ->NewNode("fc_quantizer/input") ->AsInput() ->assert_is_op_input("fc", "Input"); fc_pattern(fc_input, false); int quantize_fc_count = 0; auto handler = [&](const GraphPatternDetector::subgraph_t& subgraph, Graph* g) { VLOG(4) << "Quantize fc op"; GET_IR_NODE_FROM_SUBGRAPH(fc, fc, fc_pattern); auto* fc_op_desc = fc->Op(); // skip if should not be quantized if (fc_op_desc->GetAttrIfExists("use_quantizer") != true || fc_op_desc->GetAttrIfExists("use_mkldnn") != true) return; GET_IR_NODE_FROM_SUBGRAPH(weights, weights, fc_pattern); GET_IR_NODE_FROM_SUBGRAPH(input, input, fc_pattern); GET_IR_NODE_FROM_SUBGRAPH(output, output, fc_pattern); // get scales calculated after warmup, they scale variables to MAX=1.0 auto scales = Get("quant_var_scales"); auto input_scale = scales[input->Name()].second.data()[0]; bool is_input_unsigned = scales[input->Name()].first; QuantizeInput(g, fc, input, "Input", input_scale, is_input_unsigned, "Scale_in"); auto weight_scale_tensor = scales[weights->Name()].second; EigenVectorArrayMap eigen_tensor{weight_scale_tensor.data(), weight_scale_tensor.numel(), 1}; eigen_tensor *= static_cast(S8_MAX); std::vector filter_scale{ weight_scale_tensor.data(), weight_scale_tensor.data() + weight_scale_tensor.numel()}; fc->Op()->SetAttr("Scale_weights", filter_scale); auto output_scale = scales[output->Name()].second.data()[0]; bool is_output_unsigned = scales[output->Name()].first; DequantizeOutput(g, fc, output, "Out", output_scale, is_output_unsigned, "Scale_out"); ++quantize_fc_count; }; gpd(graph, handler); AddStatis(quantize_fc_count); std::stringstream msg_ss; msg_ss << "--- quantized " << quantize_fc_count << " fc ops"; PrettyLogDetail(msg_ss.str().c_str()); } void CPUQuantizePass::QuantizePool(Graph* graph) const { GraphPatternDetector gpd; auto pattern = gpd.mutable_pattern(); patterns::Pool pool_pattern{pattern, name_scope_}; pool_pattern(); int quantize_pool_count = 0; auto handler = [&](const GraphPatternDetector::subgraph_t& subgraph, Graph* g) { VLOG(4) << "Quantize pool2d op"; GET_IR_NODE_FROM_SUBGRAPH(pool_op, pool_op, pool_pattern); auto* pool_op_desc = pool_op->Op(); // skip if should not be quantized if (!pool_op_desc->GetAttrIfExists("use_quantizer")) return; GET_IR_NODE_FROM_SUBGRAPH(pool_input, pool_input, pool_pattern); GET_IR_NODE_FROM_SUBGRAPH(pool_output, pool_output, pool_pattern); // get scales calculated after warmup, they scale variables to MAX=1.0 auto scales = Get("quant_var_scales"); auto input_scale = scales[pool_input->Name()].second.data()[0]; bool is_input_unsigned = scales[pool_input->Name()].first; QuantizeInput(g, pool_op, pool_input, "X", input_scale, is_input_unsigned); auto output_scale = scales[pool_output->Name()].second.data()[0]; bool is_output_unsigned = scales[pool_output->Name()].first; DequantizeOutput(g, pool_op, pool_output, "Out", output_scale, is_output_unsigned); ++quantize_pool_count; }; gpd(graph, handler); AddStatis(quantize_pool_count); PrettyLogDetail("--- quantized %d pool2d ops", quantize_pool_count); } void CPUQuantizePass::QuantizeConcat(Graph* graph) const { GraphPatternDetector gpd; auto pattern = gpd.mutable_pattern(); patterns::Concat concat_pattern{pattern, name_scope_}; concat_pattern(); int quantize_concat_count = 0; auto handler = [&](const GraphPatternDetector::subgraph_t& subgraph, Graph* g) { VLOG(4) << "Quantize concat op"; GET_IR_NODE_FROM_SUBGRAPH(concat_op, concat_op, concat_pattern); auto* concat_op_desc = concat_op->Op(); // skip if should not be quantized if (!concat_op_desc->GetAttrIfExists("use_quantizer")) return; GET_IR_NODE_FROM_SUBGRAPH(concat_out, concat_out, concat_pattern); // get scales calculated after warmup, they scale variables to MAX=1.0 auto scales = Get("quant_var_scales"); // if all inputs were unsigned, then the output was set to unsigned // during the scale calculation step bool are_all_inputs_unsigned = scales[concat_out->Name()].first; QuantizeInputs(g, concat_op, "X", &scales, are_all_inputs_unsigned); auto output_scale = scales[concat_out->Name()].second.data()[0]; DequantizeOutput(g, concat_op, concat_out, "Out", output_scale, are_all_inputs_unsigned); ++quantize_concat_count; }; gpd(graph, handler); AddStatis(quantize_concat_count); PrettyLogDetail("--- quantized %d concat ops", quantize_concat_count); } void CPUQuantizePass::QuantizePriorBox(Graph* graph) const { GraphPatternDetector gpd; auto pattern = gpd.mutable_pattern(); patterns::PriorBox prior_box_pattern{pattern, name_scope_}; prior_box_pattern(); int quantize_prior_box_count = 0; auto handler = [&](const GraphPatternDetector::subgraph_t& subgraph, Graph* g) { VLOG(4) << "Quantize prior_box op"; GET_IR_NODE_FROM_SUBGRAPH(prior_box_op, prior_box_op, prior_box_pattern); auto* prior_box_op_desc = prior_box_op->Op(); // skip if should not be quantized if (!prior_box_op_desc->GetAttrIfExists("use_quantizer")) return; GET_IR_NODE_FROM_SUBGRAPH(prior_box_input, prior_box_input, prior_box_pattern); // get scales calculated after warmup, they scale variables to MAX=1.0 auto scales = Get("quant_var_scales"); auto input_scale = scales[prior_box_input->Name()].second.data()[0]; bool is_input_unsigned = scales[prior_box_input->Name()].first; QuantizeInput(g, prior_box_op, prior_box_input, "Input", input_scale, is_input_unsigned); ++quantize_prior_box_count; }; gpd(graph, handler); AddStatis(quantize_prior_box_count); PrettyLogDetail("--- quantized %d prior_box ops", quantize_prior_box_count); } void CPUQuantizePass::QuantizeTranspose(Graph* graph) const { GraphPatternDetector gpd; auto pattern = gpd.mutable_pattern(); patterns::Transpose transpose_pattern{pattern, name_scope_}; transpose_pattern(); int quantize_transpose_count = 0; auto handler = [&](const GraphPatternDetector::subgraph_t& subgraph, Graph* g) { VLOG(4) << "Quantize transpose op"; GET_IR_NODE_FROM_SUBGRAPH(transpose_op, transpose_op, transpose_pattern); auto* transpose_op_desc = transpose_op->Op(); // skip if should not be quantized if (!transpose_op_desc->GetAttrIfExists("use_quantizer")) { return; } GET_IR_NODE_FROM_SUBGRAPH(prev_op, prev_op, transpose_pattern); GET_IR_NODE_FROM_SUBGRAPH(next_op, next_op, transpose_pattern); // skip if prev op and next op are not quantized if (!(prev_op->Op()->Type() == "dequantize" || (prev_op->Op()->GetAttrIfExists("use_quantizer"))) && !(next_op->Op()->Type() == "quantize" || (next_op->Op()->GetAttrIfExists("use_quantizer")))) { return; } GET_IR_NODE_FROM_SUBGRAPH(transpose_in, transpose_in, transpose_pattern); GET_IR_NODE_FROM_SUBGRAPH(transpose_out, transpose_out, transpose_pattern); // get scales calculated after warmup, they scale variables to MAX=1.0 auto scales = Get("quant_var_scales"); auto input_scale = scales[transpose_in->Name()].second.data()[0]; bool is_input_unsigned = scales[transpose_in->Name()].first; QuantizeInput(g, transpose_op, transpose_in, "X", input_scale, is_input_unsigned); auto output_scale = scales[transpose_out->Name()].second.data()[0]; bool is_output_unsigned = scales[transpose_out->Name()].first; DequantizeOutput(g, transpose_op, transpose_out, "Out", output_scale, is_output_unsigned); ++quantize_transpose_count; }; gpd(graph, handler); AddStatis(quantize_transpose_count); PrettyLogDetail("--- quantized %d transpose ops", quantize_transpose_count); } void CPUQuantizePass::QuantizeReshape(Graph* graph) const { GraphPatternDetector gpd; auto pattern = gpd.mutable_pattern(); patterns::Reshape reshape_pattern{pattern, name_scope_}; reshape_pattern(); int quantize_reshape_count = 0; auto handler = [&](const GraphPatternDetector::subgraph_t& subgraph, Graph* g) { VLOG(4) << "Quantize reshape op"; GET_IR_NODE_FROM_SUBGRAPH(reshape_op, reshape_op, reshape_pattern); auto* reshape_op_desc = reshape_op->Op(); // skip if should not be quantized if (!reshape_op_desc->GetAttrIfExists("use_quantizer")) { return; } GET_IR_NODE_FROM_SUBGRAPH(prev_op, prev_op, reshape_pattern); GET_IR_NODE_FROM_SUBGRAPH(next_op, next_op, reshape_pattern); // skip if prev op and next op is not quantized if (!(prev_op->Op()->Type() == "dequantize" || (prev_op->Op()->GetAttrIfExists("use_quantizer"))) && !(next_op->Op()->Type() == "quantize" || (next_op->Op()->GetAttrIfExists("use_quantizer")))) { return; } GET_IR_NODE_FROM_SUBGRAPH(reshape_in, reshape_in, reshape_pattern); GET_IR_NODE_FROM_SUBGRAPH(reshape_out, reshape_out, reshape_pattern); // get scales calculated after warmup, they scale variables to MAX=1.0 auto scales = Get("quant_var_scales"); auto input_scale = scales[reshape_in->Name()].second.data()[0]; bool is_input_unsigned = scales[reshape_in->Name()].first; QuantizeInput(g, reshape_op, reshape_in, "X", input_scale, is_input_unsigned); auto output_scale = scales[reshape_out->Name()].second.data()[0]; bool is_output_unsigned = scales[reshape_out->Name()].first; DequantizeOutput(g, reshape_op, reshape_out, "Out", output_scale, is_output_unsigned); ++quantize_reshape_count; }; gpd(graph, handler); AddStatis(quantize_reshape_count); PrettyLogDetail("--- quantized %d reshape ops", quantize_reshape_count); } void CPUQuantizePass::ApplyImpl(ir::Graph* graph) const { VLOG(3) << "Quantizing the graph."; PADDLE_ENFORCE(graph); FusePassBase::Init(name_scope_, graph); PADDLE_ENFORCE(param_scope()); QuantizeConv(graph, false /* with_residual_data */); QuantizeConv(graph, true /* with_residual_data */); QuantizePool(graph); QuantizeConcat(graph); QuantizePriorBox(graph); QuantizeTranspose(graph); QuantizeFc(graph); QuantizeReshape(graph); } } // namespace ir } // namespace framework } // namespace paddle REGISTER_PASS(cpu_quantize_pass, paddle::framework::ir::CPUQuantizePass) .RequirePassAttr("quant_var_scales");