/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. */ #include "gtest/gtest.h" #include "paddle/operators/math/math_function.h" #include "paddle/operators/math/selected_rows_functor.h" TEST(selected_rows_functor, gpu_add) { using namespace paddle::framework; using namespace paddle::platform; using namespace paddle::operators::math; CUDAPlace gpu_place(0); CPUPlace cpu_place; CUDADeviceContext ctx(gpu_place); SetConstant functor; int64_t height = 10; int64_t row_numel = 10; std::vector rows1{0, 4, 7}; std::unique_ptr selected_rows1{new SelectedRows(rows1, height)}; auto* in1_value = selected_rows1->mutable_value(); in1_value->mutable_data( make_ddim({static_cast(rows1.size()), row_numel}), gpu_place); functor(ctx, in1_value, 1.0); std::vector rows2{0, 5, 7, 9}; std::unique_ptr selected_rows2{new SelectedRows(rows2, height)}; auto* in2_value = selected_rows2->mutable_value(); in2_value->mutable_data( make_ddim({static_cast(rows2.size()), row_numel}), gpu_place); functor(ctx, in2_value, 2.0); std::unique_ptr output{new SelectedRows()}; auto* out_value = output->mutable_value(); // simplely concat two SelectedRows out_value->mutable_data(make_ddim({7, 10}), gpu_place); SelectedRowsAdd add_functor; add_functor(ctx, *selected_rows1, *selected_rows2, output.get()); auto out_height = output->height(); EXPECT_EQ(out_height, height); auto& out_rows = output->rows(); // input1 rows EXPECT_EQ(out_rows[0], 0); EXPECT_EQ(out_rows[1], 4); EXPECT_EQ(out_rows[2], 7); // input2 rows EXPECT_EQ(out_rows[3], 0); EXPECT_EQ(out_rows[4], 5); EXPECT_EQ(out_rows[5], 7); EXPECT_EQ(out_rows[6], 9); Tensor out_cpu; CopyFrom(*out_value, cpu_place, ctx, &out_cpu); ctx.Wait(); auto* out_cpu_data = out_cpu.data(); // input1 value EXPECT_EQ(out_cpu_data[0 * row_numel + 0], 1.0); EXPECT_EQ(out_cpu_data[0 * row_numel + 8], 1.0); EXPECT_EQ(out_cpu_data[1 * row_numel + 1], 1.0); EXPECT_EQ(out_cpu_data[2 * row_numel + 6], 1.0); // input2 value EXPECT_EQ(out_cpu_data[3 * row_numel + 3], 2.0); EXPECT_EQ(out_cpu_data[3 * row_numel + 8], 2.0); EXPECT_EQ(out_cpu_data[4 * row_numel + 4], 2.0); EXPECT_EQ(out_cpu_data[5 * row_numel + 7], 2.0); EXPECT_EQ(out_cpu_data[6 * row_numel + 9], 2.0); std::unique_ptr tensor1{new Tensor()}; tensor1->mutable_data(make_ddim({height, row_numel}), gpu_place); functor(ctx, tensor1.get(), 3.0); std::unique_ptr tensor2{new Tensor()}; tensor2->mutable_data(make_ddim({height, row_numel}), gpu_place); SelectedRowsAddTensor add_tensor_functor; add_tensor_functor(ctx, *output, *tensor1, tensor2.get()); Tensor tensor2_cpu; CopyFrom(*tensor2, cpu_place, ctx, &tensor2_cpu); ctx.Wait(); auto* tensor2_cpu_data = tensor2_cpu.data(); // row0: 1.0 + 2.0 + 3.0 EXPECT_EQ(tensor2_cpu_data[0 * row_numel + 0], 6.0); // row1: 3.0 EXPECT_EQ(tensor2_cpu_data[1 * row_numel + 1], 3.0); // row4 : 1.0 + 3.0 EXPECT_EQ(tensor2_cpu_data[4 * row_numel + 6], 4.0); // row5: 2.0 + 3.0 EXPECT_EQ(tensor2_cpu_data[5 * row_numel + 7], 5.0); // row6: 3.0 EXPECT_EQ(tensor2_cpu_data[6 * row_numel + 1], 3.0); // row7: 1.0 + 2.0 + 3.0 EXPECT_EQ(tensor2_cpu_data[7 * row_numel + 3], 6.0); // row9: 2.0 + 3.0 EXPECT_EQ(tensor2_cpu_data[9 * row_numel + 6], 5.0); } TEST(selected_rows_functor, gpu_add_to) { using namespace paddle::framework; using namespace paddle::platform; using namespace paddle::operators::math; CUDAPlace gpu_place(0); CPUPlace cpu_place; CUDADeviceContext ctx(gpu_place); SetConstant functor; int64_t height = 10; int64_t row_numel = 10; std::vector rows1{0, 4, 7}; std::unique_ptr selected_rows1{new SelectedRows(rows1, height)}; auto* in1_value = selected_rows1->mutable_value(); in1_value->mutable_data( make_ddim({static_cast(rows1.size()), row_numel}), gpu_place); functor(ctx, in1_value, 1.0); std::vector rows2{0, 5, 7, 9}; std::unique_ptr selected_rows2{new SelectedRows(rows2, height)}; auto* in2_value = selected_rows2->mutable_value(); in2_value->mutable_data( make_ddim({static_cast(rows2.size()), row_numel}), gpu_place); functor(ctx, in2_value, 2.0); std::unique_ptr output{new SelectedRows()}; output->set_height(height); auto* out_value = output->mutable_value(); // simplely concat two SelectedRows out_value->mutable_data(make_ddim({7, 10}), gpu_place); SelectedRowsAddTo add_to_functor; add_to_functor(ctx, *selected_rows1, 0, output.get()); add_to_functor(ctx, *selected_rows2, in1_value->numel(), output.get()); auto out_height = output->height(); EXPECT_EQ(out_height, height); auto& out_rows = output->rows(); // input1 rows EXPECT_EQ(out_rows[0], 0); EXPECT_EQ(out_rows[1], 4); EXPECT_EQ(out_rows[2], 7); // input2 rows EXPECT_EQ(out_rows[3], 0); EXPECT_EQ(out_rows[4], 5); EXPECT_EQ(out_rows[5], 7); EXPECT_EQ(out_rows[6], 9); Tensor out_cpu; CopyFrom(*out_value, cpu_place, ctx, &out_cpu); ctx.Wait(); auto* out_cpu_data = out_cpu.data(); // input1 value EXPECT_EQ(out_cpu_data[0 * row_numel + 0], 1.0); EXPECT_EQ(out_cpu_data[0 * row_numel + 8], 1.0); EXPECT_EQ(out_cpu_data[1 * row_numel + 1], 1.0); EXPECT_EQ(out_cpu_data[2 * row_numel + 6], 1.0); // input2 value EXPECT_EQ(out_cpu_data[3 * row_numel + 3], 2.0); EXPECT_EQ(out_cpu_data[3 * row_numel + 8], 2.0); EXPECT_EQ(out_cpu_data[4 * row_numel + 4], 2.0); EXPECT_EQ(out_cpu_data[5 * row_numel + 7], 2.0); EXPECT_EQ(out_cpu_data[6 * row_numel + 9], 2.0); std::unique_ptr tensor1{new Tensor()}; tensor1->mutable_data(make_ddim({height, row_numel}), gpu_place); functor(ctx, tensor1.get(), 3.0); SelectedRowsAddToTensor add_to_tensor_functor; add_to_tensor_functor(ctx, *output, tensor1.get()); Tensor tensor1_cpu; CopyFrom(*tensor1, cpu_place, ctx, &tensor1_cpu); ctx.Wait(); auto* tensor1_cpu_data = tensor1_cpu.data(); // row0: 1.0 + 2.0 + 3.0 EXPECT_EQ(tensor1_cpu_data[0 * row_numel + 0], 6.0); // row1: 3.0 EXPECT_EQ(tensor1_cpu_data[1 * row_numel + 1], 3.0); // row4 : 1.0 + 3.0 EXPECT_EQ(tensor1_cpu_data[4 * row_numel + 6], 4.0); // row5: 2.0 + 3.0 EXPECT_EQ(tensor1_cpu_data[5 * row_numel + 7], 5.0); // row6: 3.0 EXPECT_EQ(tensor1_cpu_data[6 * row_numel + 1], 3.0); // row7: 1.0 + 2.0 + 3.0 EXPECT_EQ(tensor1_cpu_data[7 * row_numel + 3], 6.0); // row9: 2.0 + 3.0 EXPECT_EQ(tensor1_cpu_data[9 * row_numel + 6], 5.0); }