# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Defination of Role Makers.""" import os import numpy as np from multiprocessing import Process, Manager import paddle.fluid as fluid __all__ = ['RoleMakerBase', 'UserDefinedRoleMaker', 'PaddleCloudRoleMaker'] class Role: WORKER = 1 SERVER = 2 class RoleMakerBase(object): """ RoleMakerBase is a base class for assigning a role to current process in distributed training. A paddle developer can implement RoleMakerBase to design a role maker for worker or pserver assignment. """ def __init__(self): self._worker_endpoints = [] self._server_endpoints = [] self._role_is_generated = False self._role = None self._current_id = -1 self._node_type = None self._node_type_comm = None self._all_comm = None def is_worker(self): """ return is_worker() of current process """ raise NotImplementedError("Please implement this method in child class") def is_server(self): """ return is_server() of current process """ raise NotImplementedError("Please implement this method in child class") def is_first_worker(self): """ Check whether the node is the first instance of worker. Returns: bool: True if this is the first node of worker, False if not. """ raise NotImplementedError("Please implement this method in child class") def worker_num(self): """ Get current total worker number. Returns: int: worker number """ raise NotImplementedError("Please implement this method in child class") def server_num(self): """ Get current total server number. Returns: int: server number """ raise NotImplementedError("Please implement this method in child class") def worker_index(self): """ Get current worker id. Returns: int: node id """ raise NotImplementedError("Please implement this method in child class") def server_index(self): """ Get current server id. Returns: int: node id """ raise NotImplementedError("Please implement this method in child class") def role_id(self): """ Get current id. Returns: int: node id """ raise NotImplementedError("Please implement this method in child class") def node_num(self): """ Get the training node number Returns: int: node num """ raise NotImplementedError("Please implement this method in child class") def get_trainer_endpoints(self): """ return trainer endpoints """ return self._worker_endpoints def get_pserver_endpoints(self): """ return pserver endpoints """ return self._server_endpoints def to_string(self): return "role: {}, current_id: {}, worker_endpoints: {}, server_endpoints: {}".format( self._role, self._current_id, self._worker_endpoints, self._server_endpoints) def _all_gather(self, comm_world, input): """ Args: input(int|float): input value Returns: return a list of values """ print("warning: RoleMakerBase does not have all gather.") return None def _all_reduce(self, comm_world, input, mode="sum"): """ Args: input(list/numpy.array): array of one dim output(list/numpy.array): array of one dim mode(str): "sum" or "min" or "max" """ print("warning: RoleMakerBase does not have all reduce worker.") return None def _barrier(self, comm_world): """ barrier between trainers if current role is TRAINER """ print("warning: RoleMakerBase does not have barrier worker.") class PaddleCloudRoleMaker(RoleMakerBase): def __init__(self, is_collective=False, **kwargs): super(PaddleCloudRoleMaker, self).__init__() self._is_collective = is_collective self._init_gloo = False #default no init gloo self._kwargs = kwargs self._role_is_generated = False self._server_endpoints = None self._worker_endpoints = None self._node_type_comm = None self._all_comm = None if not self._is_collective: self._hdfs_name = kwargs.get("hdfs_name", "") self._hdfs_ugi = kwargs.get("hdfs_ugi", "") self._hdfs_path = kwargs.get("path", "").rstrip("/") self._init_timeout_seconds = kwargs.get("init_timeout_seconds", 3600) self._run_timeout_seconds = kwargs.get("run_timeout_seconds", 9999999) ip_port = kwargs.get("http_ip_port", "") self._http_ip_port = [] self._http_server = None # if ip_port is not empty, it will use http instead of hdfs if ip_port != "": self._http_ip_port = ip_port.split(":") # it's for communication between processes self._manager = Manager() # global dict to store status self._http_server_d = self._manager.dict() # set running status of http server self._http_server_d["running"] = False self._iface = self.__get_default_iface() # this environment variable can be empty self._prefix = os.getenv("SYS_JOB_ID", "") def _barrier(self, comm_world): if isinstance(comm_world, fluid.core.Gloo): comm_world.barrier() else: print("warning: must init Gloo before using _barrier() function") def _all_gather(self, comm_world, input): if isinstance(comm_world, fluid.core.Gloo): self._barrier(comm_world) output = comm_world.all_gather(input) return output else: print("warning: must init Gloo before using _all_gather() function") return None def _all_reduce(self, comm_world, input, mode="sum"): if isinstance(comm_world, fluid.core.Gloo): input = np.array(input) input_shape = input.shape input_list = input.reshape(-1).tolist() self._barrier(comm_world) ans = comm_world.all_reduce(input_list, mode) output = np.array(ans).reshape(input_shape) return output else: print("warning: must init Gloo before using _all_reduce() function") return None def is_worker(self): """ whether current process is worker """ if not self._role_is_generated: self.generate_role() return self._role == Role.WORKER def is_server(self): """ whether current process is server """ if not self._role_is_generated: self.generate_role() return self._role == Role.SERVER def is_first_worker(self): """ whether current process is worker of rank 0 """ if not self._role_is_generated: self.generate_role() return self._role == Role.WORKER and self._current_id == 0 def worker_index(self): """ get index of current worker """ if not self._role_is_generated: self.generate_role() return self._current_id def server_index(self): """ get index of current server """ if not self._role_is_generated: self.generate_role() return self._current_id def role_id(self): """ get index of current node """ if self.is_server(): return self.server_index() elif self.is_worker(): return self.worker_index() def worker_num(self): """ retrun the current number of worker """ if not self._role_is_generated: self.generate_role() return self._trainers_num def server_num(self): """ return the current number of server """ if not self._role_is_generated: self.generate_role() return self._trainers_num def node_num(self): """ return the training node number """ if not self._role_is_generated: self.generate_role() return self._node_num def get_trainer_endpoints(self): """ get endpoint of all trainers """ if not self._role_is_generated: self.generate_role() return self._worker_endpoints def get_pserver_endpoints(self): """ get endpoint of all pservers """ if not self._role_is_generated: self.generate_role() return self._server_endpoints def _get_rank(self): """ get current rank in all workers and pservers """ if not self._role_is_generated: self.generate_role() return self._rank def _get_size(self): """ get total num of all workers and pservers """ if not self._role_is_generated: self.generate_role() return self._size def _ps_env(self): try: # Environment variable PADDLE_PSERVERS_IP_PORT_LIST must be set # format: string(ip:port), eg. 127.0.0.1:6001 self._server_endpoints = os.environ[ "PADDLE_PSERVERS_IP_PORT_LIST"].split(",") self._worker_endpoints = os.getenv("PADDLE_TRAINER_ENDPOINTS", "").split(",") trainers_num = int(os.environ["PADDLE_TRAINERS_NUM"]) training_role = os.environ["TRAINING_ROLE"] if training_role not in ["TRAINER", "PSERVER"]: raise ValueError("TRAINING_ROLE must be PSERVER or TRAINER") if training_role == "TRAINER": role = Role.WORKER current_id = int(os.environ["PADDLE_TRAINER_ID"]) if len(self._worker_endpoints) > 0: self._cur_endpoint = self._worker_endpoints[current_id] elif training_role == "PSERVER": role = Role.SERVER port = os.environ["PADDLE_PORT"] ip = os.environ["POD_IP"] self._cur_endpoint = ip + ":" + port current_id = self._server_endpoints.index(self._cur_endpoint) else: raise ValueError("TRAINING_ROLE must be PSERVER or TRAINER") except ValueError as ve: raise ValueError( "something wrong with PaddleCloud, please check environment") self._trainers_num = trainers_num self._role = role self._current_id = current_id self._node_num = len( set([x.split(':')[0] for x in self._worker_endpoints])) def _collective_env(self): self._current_id = int(os.getenv("PADDLE_TRAINER_ID", "0")) self._training_role = os.getenv("PADDLE_TRAINING_ROLE", "TRAINER") assert (self._training_role == "TRAINER") self._worker_endpoints = os.getenv("PADDLE_TRAINER_ENDPOINTS") self._cur_endpoint = os.getenv("PADDLE_CURRENT_ENDPOINT") assert self._worker_endpoints is not None, "can't find PADDLE_TRAINER_ENDPOINTS" self._worker_endpoints = self._worker_endpoints.split(",") self._trainers_num = len(self._worker_endpoints) self._node_num = len( set([x.split(':')[0] for x in self._worker_endpoints])) def _init_gloo_env(self): def init_gloo_instance(role="trainer"): role = role.lower() assert role in ["trainer", "pserver", "all"] if role == "trainer": all_list = self._worker_endpoints rank = self._current_id elif role == "pserver": all_list = self._server_endpoints rank = self._current_id else: all_list = self._worker_endpoints + self._server_endpoints rank = all_list.index(self._cur_endpoint) gloo = fluid.core.Gloo() gloo.set_rank(rank) gloo.set_size(len(all_list)) gloo.set_prefix(self._prefix) gloo.set_iface(self._iface) gloo.set_timeout_seconds(self._init_timeout_seconds, self._run_timeout_seconds) if len(self._http_ip_port) != 0: gloo.set_http_store(self._http_ip_port[0], int(self._http_ip_port[1]), role) else: gloo.set_hdfs_store(self._hdfs_path + "/" + role, self._hdfs_name, self._hdfs_ugi) gloo.init() return gloo # paddlecloud support gloo if self._role == Role.WORKER: if self._current_id == 0 and len(self._http_ip_port) != 0: size_d = { "trainer": len(self._worker_endpoints), "pserver": len(self._server_endpoints), "all": len(self._worker_endpoints) + len(self._server_endpoints) } # child process for http server self._http_server = Process( target=self.__start_kv_server, args=(self._http_server_d, size_d)) self._http_server.daemon = True # set running status to True self._http_server_d["running"] = True # start child process self._http_server.start() self._node_type = 1 gloo = init_gloo_instance("trainer") self._node_type_comm = gloo else: assert self._role == Role.SERVER self._node_type = 0 gloo = init_gloo_instance("pserver") self._node_type_comm = gloo all_list = self._worker_endpoints + self._server_endpoints self._rank = all_list.index(self._cur_endpoint) self._size = len(all_list) gloo = init_gloo_instance("all") self._all_comm = gloo if self._http_server is not None: # set running status to False self._http_server_d["running"] = False # wait until child process exits self._http_server.join() def generate_role(self): """ generate role for role maker """ if not self._role_is_generated: if not self._is_collective: self._ps_env() if "PADDLE_WITH_GLOO" in os.environ: self._init_gloo = bool(os.environ["PADDLE_WITH_GLOO"]) if self._init_gloo: self._init_gloo_env() else: self._collective_env() self._role_is_generated = True def __get_default_iface(self): """ get default physical interface """ default1 = self.__get_default_iface_from_gateway() default2 = self.__get_default_iface_from_interfaces() return default2 if default1 == "lo" else default1 def __get_default_iface_from_gateway(self): """ get default physical interface """ import netifaces gateways = netifaces.gateways() if gateways.get(netifaces.AF_INET) != None: gateway = gateways[netifaces.AF_INET] if len(gateway) > 0 and len(gateway[0]) > 1: return gateway[0][1] return "lo" def __get_default_iface_from_interfaces(self): """ get default physical interface """ import netifaces for intf_name in netifaces.interfaces(): addresses = netifaces.ifaddresses(intf_name) if netifaces.AF_INET in addresses: ipv4_addresses = addresses[netifaces.AF_INET] for ipv4_address in ipv4_addresses: if 'broadcast' in ipv4_address: return intf_name return "lo" def __start_kv_server(self, http_server_d, size_d): from paddle.distributed.fleet.utils import KVServer http_server = KVServer(int(self._http_ip_port[1]), size_d) http_server.start() wait_seconds = 5 while http_server_d.get("running", False) and not http_server.shoud_stop(): time.sleep(wait_seconds) http_server.stop() class UserDefinedRoleMaker(PaddleCloudRoleMaker): def __init__(self, is_collective=False, init_gloo=False, **kwargs): super(UserDefinedRoleMaker, self).__init__( is_collective=is_collective, init_gloo=init_gloo, **kwargs) def _user_defined_ps_env(self): self._server_endpoints = self._kwargs.get("server_endpoints") self._worker_endpoints = self._kwargs.get("worker_endpoints", []) self._trainers_num = self._kwargs.get("worker_num", 0) if self._trainers_num == 0: assert (len(self._worker_endpoints) > 0) self._trainers_num = len(self._worker_endpoints) self._role = self._kwargs.get("role") self._current_id = self._kwargs.get("current_id") if self._role == Role.WORKER and len( self._worker_endpoints) > self._current_id: self._cur_endpoint = self._worker_endpoints[self._current_id] elif self._role == Role.SERVER: self._cur_endpoint = self._server_endpoints[self._current_id] self._node_num = len( set([x.split(':')[0] for x in self._worker_endpoints])) def _user_defined_collective_env(self): self._worker_endpoints = self._kwargs.get("worker_endpoints") self._current_id = self._kwargs.get("current_id") self._trainers_num = len(self._worker_endpoints) self._training_role = Role.Worker self._node_num = len( set([x.split(':')[0] for x in self._worker_endpoints])) def generate_role(self): """ generate role for role maker """ if not self._role_is_generated: if not self._is_collective: self._user_defined_ps_env() if self._init_gloo: self._init_gloo_env() else: self._user_defined_collective_env() self._role_is_generated = True