/* Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. */ #pragma once #include "paddle/fluid/platform/mkldnn_reuse.h" namespace paddle { namespace operators { using paddle::framework::Tensor; template class SoftplusMKLDNNHandler : public platform::MKLDNNHandlerNoCachingT { public: SoftplusMKLDNNHandler(const framework::ExecutionContext& ctx, const Tensor* x, const float beta, const dnnl::engine engine) : platform::MKLDNNHandlerNoCachingT(engine, ctx.GetPlace()) { auto x_tz = phi::vectorize(x->dims()); auto beta_tz = std::vector(x_tz.size(), 1); auto beta_md = dnnl::memory::desc(beta_tz, platform::MKLDNNGetDataType(), platform::GetPlainMKLDNNFormat(x_tz.size())); dnnl::post_ops post_ops; post_ops.append_eltwise(1.0f, dnnl::algorithm::eltwise_soft_relu, 0.0f, 0.0f); if (beta != 1.0f) { post_ops.append_eltwise(1.0f, dnnl::algorithm::eltwise_linear, 1.0f / beta, 0.0f); } AppendFusedActivationIfExists(ctx, &post_ops); dnnl::primitive_attr attrs; attrs.set_post_ops(post_ops); this->AcquireForwardPrimitiveDescriptor(attrs, dnnl::algorithm::binary_mul, x->mem_desc(), beta_md, x->mem_desc()); } std::shared_ptr AcquireBetaMemory(const float* beta) { return this->AcquireMemoryFromPrimitive( this->fwd_pd_->src1_desc(), platform::to_void_cast(beta)); } private: void AppendFusedActivationIfExists(const framework::ExecutionContext& ctx, dnnl::post_ops* post_ops) { const auto& fused_activation_type = algo_map.find(ctx.Attr("fuse_activation_type")); if (fused_activation_type != algo_map.end()) { auto scale_out = ctx.Attr("fuse_activation_scale"); // for future int8 support post_ops->append_eltwise(scale_out, fused_activation_type->second, ctx.Attr("fuse_activation_alpha"), ctx.Attr("fuse_activation_beta")); } } static const std::unordered_map algo_map; }; template const std::unordered_map SoftplusMKLDNNHandler::algo_map = { {"relu", dnnl::algorithm::eltwise_relu}, {"tanh", dnnl::algorithm::eltwise_tanh}, {"leaky_relu", dnnl::algorithm::eltwise_relu}, {"swish", dnnl::algorithm::eltwise_swish}, {"hardswish", dnnl::algorithm::eltwise_hardswish}, {"sqrt", dnnl::algorithm::eltwise_sqrt}, {"abs", dnnl::algorithm::eltwise_abs}, {"clip", dnnl::algorithm::eltwise_clip}, {"gelu", dnnl::algorithm::eltwise_gelu_erf}, {"gelu_tanh", dnnl::algorithm::eltwise_gelu_tanh}, {"relu6", dnnl::algorithm::eltwise_bounded_relu}, {"sigmoid", dnnl::algorithm::eltwise_logistic}}; template void custom_softplus_eltwise_forward(const framework::ExecutionContext& ctx) { const auto& dev_ctx = ctx.template device_context(); const auto& mkldnn_engine = dev_ctx.GetEngine(); const auto* x = ctx.Input("X"); auto* out = ctx.Output("Out"); bool is_inplaced = x->IsSharedBufferWith(*out); const float beta = ctx.Attr("beta"); SoftplusMKLDNNHandler handler(ctx, x, beta, mkldnn_engine); auto src_memory_p = handler.AcquireSrcMemory(x); auto beta_memory_p = handler.AcquireBetaMemory(&beta); std::shared_ptr dst_memory_p = nullptr; if (is_inplaced) { dst_memory_p = src_memory_p; out->mutable_data(ctx.GetPlace()); } else { dst_memory_p = handler.AcquireDstMemory(out); } auto binary_p = handler.AcquireForwardPrimitive(); auto& astream = paddle::platform::MKLDNNDeviceContext::tls().get_stream(); const std::unordered_map args = { {DNNL_ARG_SRC_0, *src_memory_p}, {DNNL_ARG_SRC_1, *beta_memory_p}, {DNNL_ARG_DST, *dst_memory_p}}; binary_p->execute(astream, args); astream.wait(); out->set_mem_desc(dst_memory_p->get_desc()); } } // namespace operators } // namespace paddle