// Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved. // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. #include #include #include "gtest/gtest.h" #include "paddle/fluid/imperative/reducer.h" namespace paddle { namespace imperative { TEST(TestGroup, TestPrintGroupMessage) { Group group; std::stringstream stream1, stream2; stream1 << group; ASSERT_STREQ(stream1.str().c_str(), "numel: 0 ;is_sparse: 0 ;var number: 0\n[]\n"); std::vector vars; size_t vars_num = 102; for (size_t i = 0; i < vars_num; ++i) { vars.push_back(i); } group.variable_indices_ = vars; group.all_length_ = 102; group.is_sparse_ = false; std::string head = "numel: 102 ;is_sparse: 0 ;var number: 102\n"; head = head + "["; auto begin = vars.begin(); auto end = vars.end(); for (int i = 0; begin != end && i < 100; ++i, ++begin) { if (i > 0) head += ' '; head += std::to_string(*begin); } if (begin != end) { head += " ..."; } head += "]\n"; stream2 << group; ASSERT_STREQ(stream2.str().c_str(), head.c_str()); } template void GroupConcatSplit(Place place, size_t size) { platform::CPUPlace cpu_place; Group group; // [[0.0], [0.0, 1.0], [0.0, 1.0, 2.0] .. ] std::vector vars; vars.resize(size); for (size_t i = 0; i < size; ++i) { auto len = i + 1; auto* tensor = vars[i].GetMutable(); tensor->Resize({static_cast(len)}); auto* data = tensor->mutable_data(place); std::vector value; for (size_t j = 0; j < len; ++j) { value.push_back(static_cast(1.0 * j)); } if (std::is_same::value) { #if defined(PADDLE_WITH_NCCL) paddle::memory::Copy(place, data, cpu_place, value.data(), sizeof(T) * value.size(), 0); #endif } else { paddle::memory::Copy(place, data, cpu_place, value.data(), sizeof(T) * value.size()); } framework::Tensor tmp; tmp.ShareDataWith(*tensor).Resize({static_cast(len)}); group.dense_tensors_.push_back(std::move(tmp)); group.all_length_ += len; group.dtype_ = tensor->type(); } paddle::platform::DeviceContextPool& pool = paddle::platform::DeviceContextPool::Instance(); auto* dev_ctx = pool.Get(place); { // concat auto* tensor = group.dense_contents_.GetMutable(); tensor->Resize(framework::make_ddim({group.all_length_})) .mutable_data(place, group.dtype_); group.ConcatTensors(*dev_ctx); framework::Tensor tmp; framework::TensorCopySync(*tensor, cpu_place, &tmp); auto* data = tmp.data(); size_t offset = 0; for (size_t i = 0; i < size; ++i) { auto len = i + 1; for (size_t j = 0; j < len; ++j) { EXPECT_EQ(data[offset + j], static_cast(1.0 * j)); // [[-0.0], [-0.0, -1.0], [-0.0, -1.0, -2.0] .. ] data[offset + j] = -data[offset + j]; } offset += len; } framework::TensorCopySync(tmp, place, tensor); } { // split group.SplitTensors(*dev_ctx); for (size_t i = 0; i < size; ++i) { auto len = i + 1; auto& tensor = group.dense_tensors_[i]; framework::Tensor tmp; framework::TensorCopySync(tensor, cpu_place, &tmp); auto* data = tmp.data(); for (size_t j = 0; j < len; ++j) { EXPECT_EQ(data[j], static_cast(-1.0 * j)); } } } } #if defined(PADDLE_WITH_NCCL) TEST(TestGroup, TestConcatSplit) { platform::CUDAPlace cuda_place(0); platform::CPUPlace cpu_place; int size = 3; GroupConcatSplit(cpu_place, size); GroupConcatSplit(cpu_place, size); GroupConcatSplit(cpu_place, size); GroupConcatSplit(cuda_place, size); GroupConcatSplit(cuda_place, size); GroupConcatSplit(cuda_place, size); size = 15; GroupConcatSplit(cpu_place, size); GroupConcatSplit(cpu_place, size); GroupConcatSplit(cpu_place, size); GroupConcatSplit(cuda_place, size); GroupConcatSplit(cuda_place, size); GroupConcatSplit(cuda_place, size); } TEST(TestGroup, TestConcatSplitException) { platform::CUDAPinnedPlace place; int size = 3; ASSERT_ANY_THROW(GroupConcatSplit(place, size)); } #endif #if defined(PADDLE_WITH_XPU_BKCL) TEST(TestGroup, TestXPUConcatSplit) { platform::XPUPlace xpu_place(0); platform::CPUPlace cpu_place; int size = 3; GroupConcatSplit(cpu_place, size); GroupConcatSplit(xpu_place, size); size = 15; GroupConcatSplit(cpu_place, size); GroupConcatSplit(xpu_place, size); } #endif } // namespace imperative } // namespace paddle