# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import unittest import paddle.fluid as fluid import paddle.fluid.core as core import paddle.fluid.layers as layers import numpy from multiprocessing import Process from threading import Thread import os, sys import time class TestSendOp(unittest.TestCase): def test_send(self): # Run init_serv in a thread place = fluid.CPUPlace() # NOTE: python thread will not work here due to GIL. p = Process(target=self.init_serv, args=(place, )) p.daemon = True p.start() time.sleep(10) with open("/tmp/paddle.%d.selected_port" % p.pid, "r") as fn: selected_port = int(fn.readlines()[0]) self.init_client(place, selected_port) self.run_local(place) self.assertTrue(numpy.allclose(self.local_out, self.dist_out)) # FIXME(typhoonzero): find a way to gracefully shutdown the server. os.system("kill -9 %d" % p.pid) p.join() def init_serv(self, place): main = fluid.Program() with fluid.program_guard(main): serv = layers.ListenAndServ( "127.0.0.1:0", ["X"], optimizer_mode=False) with serv.do(): out_var = main.global_block().create_var( name="scale_0.tmp_0", psersistable=True, dtype="float32", shape=[32, 32]) x = layers.data( shape=[32, 32], dtype='float32', name="X", append_batch_size=False) fluid.initializer.Constant(value=1.0)(x, main.global_block()) layers.scale(x=x, scale=10.0, out=out_var) self.server_exe = fluid.Executor(place) self.server_exe.run(main) def init_client(self, place, port): main = fluid.Program() with fluid.program_guard(main): x = layers.data( shape=[32, 32], dtype='float32', name='X', append_batch_size=False) fluid.initializer.Constant(value=2.3)(x, main.global_block()) get_var = main.global_block().create_var( name="scale_0.tmp_0", # server side var dtype="float32", persistable=False, shape=[32, 32]) o = layers.Send("127.0.0.1:%d" % port, [x], [get_var]) exe = fluid.Executor(place) self.dist_out = exe.run(main, fetch_list=o) # o is a list def run_local(self, place): main = fluid.Program() with fluid.program_guard(main): x = layers.data( shape=[32, 32], dtype='float32', name='X', append_batch_size=False) fluid.initializer.Constant(value=2.3)(x, main.global_block()) o = layers.scale(x=x, scale=10.0) exe = fluid.Executor(place) self.local_out = exe.run(main, fetch_list=[o]) if __name__ == "__main__": unittest.main()