/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. */ #pragma once #include "paddle/fluid/framework/eigen.h" #include "paddle/fluid/framework/op_registry.h" #include "paddle/fluid/operators/math/math_function.h" #include "paddle/fluid/operators/math/sequence_pooling.h" namespace paddle { namespace operators { using Tensor = framework::Tensor; using LoDTensor = framework::LoDTensor; template using EigenVector = framework::EigenVector; template using EigenMatrix = framework::EigenMatrix; template class SequencePoolKernel : public framework::OpKernel { public: void Compute(const framework::ExecutionContext& context) const override { auto* in = context.Input("X"); auto* out = context.Output("Out"); std::string pooltype = context.Attr("pooltype"); auto dims = in->dims(); auto lod = in->lod(); int64_t w = in->numel() / dims[0]; // InferShape by lod PADDLE_ENFORCE_EQ(lod.size(), 1UL, "Only support one level sequence now."); PADDLE_ENFORCE_GE( dims[0], /*batch size = */ static_cast(lod[0].size() - 1), "The first dimension of Input(X) must be large than batch size."); dims[0] = lod[0].size() - 1; out->Resize({dims}); auto lod_level_0 = lod[0]; out->mutable_data(context.GetPlace()); auto& dev_ctx = context.template device_context(); if (pooltype == "MAX") { math::MaxSeqPoolFunctor max_pool; auto* index = context.Output("MaxIndex"); index->Resize({dims}); index->mutable_data(context.GetPlace()); max_pool(dev_ctx, *in, out, index); return; } auto& place = *context.template device_context().eigen_device(); for (int i = 0; i < static_cast(lod_level_0.size()) - 1; ++i) { Tensor in_t = in->Slice(static_cast(lod_level_0[i]), static_cast(lod_level_0[i + 1])); Tensor out_t = out->Slice(i, i + 1); int64_t h = static_cast(lod_level_0[i + 1] - lod_level_0[i]); auto in_e = EigenMatrix::From(in_t, framework::make_ddim({h, w})); auto out_e = EigenVector::Flatten(out_t); if (pooltype == "AVERAGE") { out_e.device(place) = in_e.mean(Eigen::array({{0}})); } else if (pooltype == "SUM") { out_e.device(place) = in_e.sum(Eigen::array({{0}})); } else if (pooltype == "SQRT") { out_e.device(place) = in_e.sum(Eigen::array({{0}})) / std::sqrt(static_cast(h)); } else if (pooltype == "LAST") { out_e.device(place) = in_e.chip(h - 1, 0); } else if (pooltype == "FIRST") { out_e.device(place) = in_e.chip(0, 0); } else { PADDLE_THROW("unsupported pooling pooltype"); } } } }; template class SequencePoolGradKernel : public framework::OpKernel { public: void Compute(const framework::ExecutionContext& context) const override { auto* in = context.Input("X"); auto* out_g = context.Input(framework::GradVarName("Out")); auto* in_g = context.Output(framework::GradVarName("X")); std::string pooltype = context.Attr("pooltype"); auto dims = in->dims(); auto lod = in->lod()[0]; int64_t w = in->numel() / dims[0]; in_g->mutable_data(context.GetPlace()); auto& dev_ctx = context.template device_context(); if (pooltype == "MAX") { math::MaxSeqPoolGradFunctor max_pool_grad; auto* index = context.Input("MaxIndex"); max_pool_grad(dev_ctx, *out_g, *index, in_g); return; } if (pooltype == "LAST" || pooltype == "FIRST") { // set X@Grad be zero at first when pooltype is LAST/FIRST math::SetConstant functor; functor(dev_ctx, in_g, 0); } auto& place = *context.template device_context().eigen_device(); for (int i = 0; i < static_cast(lod.size()) - 1; ++i) { auto in_g_t = in_g->Slice(static_cast(lod[i]), static_cast(lod[i + 1])); auto out_g_t = out_g->Slice(i, i + 1); int64_t h = static_cast(lod[i + 1] - lod[i]); auto in_g_e = EigenMatrix::From(in_g_t, {h, w}); auto out_g_e = EigenMatrix::From(out_g_t, {1, w}); auto out_g_e_v = EigenVector::Flatten(out_g_t); Eigen::DSizes bcast(h, 1); if (pooltype == "AVERAGE") { in_g_e.device(place) = (out_g_e / static_cast(h)).broadcast(bcast); } else if (pooltype == "SUM") { in_g_e.device(place) = (out_g_e).broadcast(bcast); } else if (pooltype == "SQRT") { in_g_e.device(place) = (out_g_e / std::sqrt(static_cast(h))).broadcast(bcast); } else if (pooltype == "LAST") { in_g_e.chip(h - 1, 0).device(place) = out_g_e_v; } else if (pooltype == "FIRST") { in_g_e.chip(0, 0).device(place) = out_g_e_v; } else { PADDLE_THROW("unsupported pooling pooltype"); } } } }; } // namespace operators } // namespace paddle