/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. */ #pragma once #include "paddle/fluid/operators/elementwise_op_function.h" namespace paddle { namespace operators { template struct DivFunctor { inline HOSTDEVICE T operator()(T a, T b) const { return a / b; } }; template class ElementwiseDivKernel : public framework::OpKernel { public: void Compute(const framework::ExecutionContext& ctx) const override { using Tensor = framework::Tensor; auto* x = ctx.Input("X"); auto* y = ctx.Input("Y"); auto* z = ctx.Output("Out"); z->mutable_data(ctx.GetPlace()); int axis = ctx.Attr("axis"); ElementwiseComputeEx, DeviceContext, T>(ctx, x, y, axis, DivFunctor(), z); } }; template struct ElementwiseDivGradFunctor { template void operator()(Device d, X x, Y y, Z z, dX dx, dY dy, dZ dz) { auto y_e = framework::EigenVector::Flatten(*y); auto z_e = framework::EigenVector::Flatten(*z); auto dz_e = framework::EigenVector::Flatten(*dz); if (dx) { auto dx_e = framework::EigenVector::Flatten(*dx); dx_e.device(d) = dz_e / y_e; } if (dy) { auto dy_e = framework::EigenVector::Flatten(*dy); dy_e.device(d) = -1.0 * dz_e * z_e / y_e; } } }; template struct ElementwiseDivBroadCastGradFunctor { template void operator()(Device d, X x, Y y, Z z, dX dx, dY dy, dZ dz, Pre pre, N n) { auto x_e = framework::EigenVector::Flatten(*x); auto y_e = framework::EigenVector::Flatten(*y); auto dz_e = framework::EigenVector::Flatten(*dz); auto y_e_bcast = y_e.reshape(Eigen::DSizes(1, n)) .broadcast(Eigen::DSizes(pre, 1)) .reshape(Eigen::DSizes(x_e.size())); if (dx) { auto dx_e = framework::EigenVector::Flatten(*dx); dx_e.device(d) = dz_e / y_e_bcast; } if (dy) { auto dy_e = framework::EigenVector::Flatten(*dy); dy_e.device(d) = (-1.0 * (x_e * dz_e) / (y_e_bcast * y_e_bcast)) .reshape(Eigen::DSizes(pre, n)) .sum(Eigen::array{{0}}); } } }; template struct ElementwiseDivBroadCast2GradFunctor { template void operator()(Device d, X x, Y y, Z z, dX dx, dY dy, dZ dz, Pre pre, N n, Post post) { auto x_e = framework::EigenVector::Flatten(*x); auto y_e = framework::EigenVector::Flatten(*y); auto dz_e = framework::EigenVector::Flatten(*dz); auto y_e_bcast = y_e.reshape(Eigen::DSizes(1, n, 1)) .broadcast(Eigen::DSizes(pre, 1, post)) .reshape(Eigen::DSizes(x_e.size())); if (dx) { auto dx_e = framework::EigenVector::Flatten(*dx); dx_e.device(d) = dz_e / y_e_bcast; } if (dy) { auto dy_e = framework::EigenVector::Flatten(*dy); dy_e.device(d) = (-1.0 * (x_e * dz_e) / (y_e_bcast * y_e_bcast)) .reshape(Eigen::DSizes(pre, n, post)) .sum(Eigen::array{{0, 2}}); } } }; template class ElementwiseDivGradKernel : public framework::OpKernel { public: void Compute(const framework::ExecutionContext& ctx) const override { using Tensor = framework::Tensor; auto* x = ctx.Input("X"); auto* y = ctx.Input("Y"); auto* out = ctx.Input("Out"); auto* dout = ctx.Input(framework::GradVarName("Out")); auto* dx = ctx.Output(framework::GradVarName("X")); auto* dy = ctx.Output(framework::GradVarName("Y")); int axis = ctx.Attr("axis"); ElementwiseGradCompute, ElementwiseDivBroadCastGradFunctor, ElementwiseDivBroadCast2GradFunctor>( ctx, x, y, out, dout, axis, dx, dy); } }; } // namespace operators } // namespace paddle