/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. */ #include "paddle/fluid/operators/beam_search_decode_op.h" #include "gtest/gtest.h" using CPUPlace = paddle::platform::CPUPlace; using LoD = paddle::framework::LoD; using LoDTensor = paddle::framework::LoDTensor; using LoDTensorArray = paddle::framework::LoDTensorArray; template using BeamNode = paddle::operators::BeamNode; template using BeamSearchDecoder = paddle::operators::BeamSearchDecoder; template using Sentence = paddle::operators::Sentence; template using BeamNodeVector = paddle::operators::BeamNodeVector; template using SentenceVector = paddle::operators::SentenceVector; namespace paddle { namespace test { void GenerateExample(const std::vector& level_0, const std::vector& level_1, const std::vector& data, LoDTensorArray* ids, LoDTensorArray* scores) { PADDLE_ENFORCE_EQ(level_0.back(), level_1.size() - 1, "source level is used to describe candidate set"); PADDLE_ENFORCE_EQ(level_1.back(), data.size(), "the lowest level is used to describe data" ", so it's last element should be data length"); CPUPlace place; LoD lod; lod.push_back(level_0); lod.push_back(level_1); // Ids LoDTensor tensor_id; tensor_id.set_lod(lod); tensor_id.Resize({static_cast(data.size())}); // malloc memory int64_t* id_ptr = tensor_id.mutable_data(place); for (size_t i = 0; i < data.size(); ++i) { id_ptr[i] = static_cast(data.at(i)); } // Scores LoDTensor tensor_score; tensor_score.set_lod(lod); tensor_score.Resize({static_cast(data.size())}); // malloc memory float* score_ptr = tensor_score.mutable_data(place); for (size_t i = 0; i < data.size(); ++i) { score_ptr[i] = static_cast(data.at(i)); } ids->push_back(tensor_id); scores->push_back(tensor_score); } } // namespace test } // namespace paddle TEST(BeamSearchDecodeOp, DeleteBeamNode) { auto* root = new BeamNode(0, 0); auto* b1 = new BeamNode(1, 1); auto* b2 = new BeamNode(2, 2); auto* b3 = new BeamNode(3, 3); b1->AppendTo(root); b2->AppendTo(root); b3->AppendTo(b1); delete b3; delete b2; } TEST(BeamSearchDecodeOp, MakeSentence) { auto* root = new BeamNode(0, 0); auto* b1 = new BeamNode(1, 1); auto* end = new BeamNode(2, 2); b1->AppendTo(root); end->AppendTo(b1); BeamSearchDecoder helper; Sentence sentence = helper.MakeSentence(end); delete end; std::vector expect_ids = {0, 1, 2}; ASSERT_EQ(sentence.word_ids, expect_ids); std::vector expect_scores = {0, 1, 2}; ASSERT_EQ(sentence.scores, expect_scores); } TEST(BeamSearchDecodeOp, PackTwoStepsFistStep) { CPUPlace place; LoDTensorArray ids; LoDTensorArray scores; paddle::test::GenerateExample( std::vector{0, 2, 6}, std::vector{0, 1, 2, 3, 4, 5, 6}, std::vector{1, 2, 3, 4, 5, 6}, &ids, &scores); std::vector> beamnode_vector_list; std::vector> sentence_vector_list( 2, SentenceVector()); BeamSearchDecoder helper; beamnode_vector_list = helper.PackTwoSteps( ids[0], scores[0], beamnode_vector_list, &sentence_vector_list); ASSERT_EQ(beamnode_vector_list.size(), 2UL); ASSERT_EQ(beamnode_vector_list[0].size(), 2UL); ASSERT_EQ(beamnode_vector_list[1].size(), 4UL); } TEST(BeamSearchDecodeOp, PackTwoSteps) { CPUPlace place; // first source has three prefix BeamNodeVector source0_prefixes; source0_prefixes.push_back( std::unique_ptr>(new BeamNode(1, 1))); source0_prefixes.push_back( std::unique_ptr>(new BeamNode(0, 0))); source0_prefixes.push_back( std::unique_ptr>(new BeamNode(3, 3))); // second source has two prefix BeamNodeVector source1_prefixes; source1_prefixes.push_back( std::unique_ptr>(new BeamNode(4, 4))); source1_prefixes.push_back( std::unique_ptr>(new BeamNode(5, 5))); std::vector> beamnode_vector_list; std::vector> sentence_vector_list( 2, SentenceVector()); beamnode_vector_list.push_back(std::move(source0_prefixes)); beamnode_vector_list.push_back(std::move(source1_prefixes)); // generate data for one step LoDTensorArray ids; LoDTensorArray scores; paddle::test::GenerateExample(std::vector{0, 3, 5}, std::vector{0, 1, 1, 3, 4, 5}, std::vector{0, 1, 2, 3, 4}, &ids, &scores); BeamSearchDecoder helper1; beamnode_vector_list = helper1.PackTwoSteps( ids[0], scores[0], beamnode_vector_list, &sentence_vector_list); ASSERT_EQ(sentence_vector_list[0].size(), 1UL); ASSERT_EQ(sentence_vector_list[1].size(), 0UL); ASSERT_EQ(beamnode_vector_list[0].size(), 3UL); ASSERT_EQ(beamnode_vector_list[1].size(), 2UL); } TEST(BeamSearchDecodeOp, PackAllSteps) { CPUPlace place; // we will constuct a sample data with 3 steps and 2 source sentences LoDTensorArray ids; LoDTensorArray scores; paddle::test::GenerateExample( std::vector{0, 3, 6}, std::vector{0, 1, 2, 3, 4, 5, 6}, std::vector{1, 2, 3, 4, 5, 6}, &ids, &scores); paddle::test::GenerateExample( std::vector{0, 3, 6}, std::vector{0, 1, 1, 3, 5, 5, 6}, std::vector{0, 1, 2, 3, 4, 5}, &ids, &scores); paddle::test::GenerateExample(std::vector{0, 3, 6}, std::vector{0, 0, 1, 2, 3, 4, 5}, std::vector{0, 1, 2, 3, 4}, &ids, &scores); ASSERT_EQ(ids.size(), 3UL); ASSERT_EQ(scores.size(), 3UL); BeamSearchDecoder helper; LoDTensor id_tensor; LoDTensor score_tensor; helper.PackAllSteps(ids, scores, &id_tensor, &score_tensor); LoD lod = id_tensor.lod(); std::vector expect_source_lod = {0, 4, 8}; EXPECT_EQ(lod[0], expect_source_lod); std::vector expect_sentence_lod = {0, 1, 3, 6, 9, 10, 13, 16, 19}; EXPECT_EQ(lod[1], expect_sentence_lod); // 2| 1, 0| 3, 1, 0| 3, 2, 1| 5| 4, 3, 2| 4, 4, 3| 6, 5, 4 std::vector expect_data = {2, 1, 0, 3, 1, 0, 3, 2, 1, 5, 4, 3, 2, 4, 4, 3, 6, 5, 4}; ASSERT_EQ(id_tensor.dims()[0], static_cast(expect_data.size())); for (size_t i = 0; i < expect_data.size(); ++i) { ASSERT_EQ(id_tensor.data()[i], static_cast(expect_data[i])); } for (int64_t i = 0; i < id_tensor.dims()[0]; ++i) { ASSERT_EQ(score_tensor.data()[i], static_cast(id_tensor.data()[i])); } }