# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from __future__ import print_function import op_test import unittest import numpy as np import paddle import paddle.fluid as fluid from paddle.static import Program, program_guard def create_test_class(op_type, callback, binary_op=True): class Cls(op_test.OpTest): def setUp(self): a = np.random.choice(a=[True, False], size=(10, 7)).astype(bool) if binary_op: b = np.random.choice(a=[True, False], size=(10, 7)).astype(bool) c = callback(a, b) else: c = callback(a) self.outputs = {'Out': c} self.op_type = op_type if binary_op: self.inputs = {'X': a, 'Y': b} else: self.inputs = {'X': a} def test_output(self): self.check_output() def test_error(self): with program_guard(Program(), Program()): # test 1 type error, x, y must be bool type x = fluid.layers.data(name='x', shape=[2], dtype='bool') y = fluid.layers.data(name='y', shape=[2], dtype='bool') a = fluid.layers.data(name='a', shape=[2], dtype='int32') op = eval("fluid.layers.%s" % self.op_type) if self.op_type != "logical_not": self.assertRaises(TypeError, op, x=x, y=y, out=1) self.assertRaises(TypeError, op, x=x, y=a) self.assertRaises(TypeError, op, x=a, y=y) else: self.assertRaises(TypeError, op, x=x, out=1) self.assertRaises(TypeError, op, x=a) # test 2 type error, x, y must be same shape x_data = fluid.layers.data( name='x_data', shape=[2], dtype='bool') y_data = fluid.layers.data( name='y_data', shape=[2, 2], dtype='bool') if self.op_type != "logical_not": self.assertRaises(TypeError, op, x=x_data, y=y_data, out=1) self.assertRaises(TypeError, op, x=y_data, y=x_data) globals()[op_type] = Cls create_test_class('logical_and', lambda _a, _b: np.logical_and(_a, _b)) create_test_class('logical_or', lambda _a, _b: np.logical_or(_a, _b)) create_test_class('logical_not', lambda _a: np.logical_not(_a), False) create_test_class('logical_xor', lambda _a, _b: np.logical_xor(_a, _b)) if __name__ == '__main__': unittest.main()