import unittest import numpy as np from op_test import OpTest def conv2dtranspose_forward_naive(input_, filter_, conv2dtranspose_param): # [2, 3, 5, 5] in_n, in_c, in_h, in_w = input_.shape # [3, 6, 3, 3] f_c, out_c, f_h, f_w = filter_.shape assert in_c == f_c stride, pad = conv2dtranspose_param['stride'], conv2dtranspose_param['pad'] out_h = (in_h - 1) * stride[0] + f_h out_w = (in_w - 1) * stride[1] + f_w out = np.zeros((in_n, out_c, out_h, out_w)) for n in range(in_n): for i in range(in_h): for j in range(in_w): input_masked = input_[n, :, i, j] # (c) input_masked = np.reshape(input_masked, (in_c, 1, 1)) input_masked = np.tile(input_masked, (1, f_h, f_w)) for k in range(out_c): tmp_out = np.sum(input_masked * filter_[:, k, :, :], axis=0) i1, i2 = i * stride[0], i * stride[0] + f_h j1, j2 = j * stride[0], j * stride[0] + f_w out[n, k, i1:i2, j1:j2] += tmp_out return out class TestConv2dTransposeOp(OpTest): def setUp(self): # init as conv transpose self.init_op_type() # [2, 3, 5, 5] -> kernel [3, 6, 3, 3] -> output [2, 6, 7, 7] self.init_test_case() conv2dtranspose_param = {'stride': self.stride, 'pad': self.pad} input_ = np.random.random(self.input_size).astype("float32") filter_ = np.random.random(self.filter_size).astype("float32") output = conv2dtranspose_forward_naive(input_, filter_, conv2dtranspose_param) # print 'deconv output py', output, output.shape self.inputs = {'Input': input_, 'Filter': filter_} self.attrs = { 'strides': self.stride, 'paddings': self.pad, # 'dilations': self.dilations } self.outputs = {'Output': output} def test_check_output(self): print 'check output here' self.check_output() def test_check_grad(self): self.check_grad( set(['Input', 'Filter']), 'Output', max_relative_error=0.05) def test_check_grad_no_filter(self): self.check_grad( ['Input'], 'Output', max_relative_error=0.05, no_grad_set=set(['Filter'])) def test_check_grad_no_input(self): self.check_grad( ['Filter'], 'Output', max_relative_error=0.05, no_grad_set=set(['Input'])) def init_test_case(self): self.pad = [0, 0] self.stride = [1, 1] self.dilations = [1, 1] self.input_size = [2, 3, 5, 5] # NCHW f_c = self.input_size[1] self.filter_size = [f_c, 6, 3, 3] def init_op_type(self): self.op_type = "conv2dtranspose" """ class TestCudnn(TestConv2dOp): def init_group(self): self.groups = 1 def init_op_type(self): self.op_type = "conv_cudnn" """ if __name__ == '__main__': unittest.main()