# The apis in this file are unstandardized that may caused by a variety of reasons, # we are trying to fix these apis and will move standardized apis into api.yaml. - api : abs args : (Tensor x) output : Tensor infer_meta : func : RealAndImagInferMeta kernel : func : abs backward : abs_grad # accuracy - api : accuracy args : (Tensor x, Tensor indices, Tensor label) output : Tensor(accuracy), Tensor(correct), Tensor(total) infer_meta : func : AccuracyInferMeta kernel : func : accuracy dtype : x # acos - api : acos args : (Tensor x) output : Tensor infer_meta : func : UnchangedInferMeta kernel : func : acos backward : acos_grad # acosh - api : acosh args : (Tensor x) output : Tensor infer_meta : func : UnchangedInferMeta kernel : func : acosh backward : acosh_grad - api : adadelta args : (Tensor param, Tensor grad, Tensor avg_squared_grad, Tensor avg_squared_update, float rho, float epsilon) output : Tensor(param_out), Tensor(moment_out), Tensor(inf_norm_out) infer_meta : func : AdadeltaInferMeta kernel : func : adadelta - api : adagrad_ args : (Tensor param, Tensor grad, Tensor moment, Tensor learning_rate, float epsilon) output : Tensor(param_out), Tensor(moment_out) infer_meta : func : AdagradInferMeta kernel : func : adagrad {dense, dense, dense, dense -> dense, dense} adagrad_dense_param_sparse_grad {dense, selected_rows, dense, dense -> dense, dense} data_type : param inplace : (param -> param_out), (moment -> moment_out) - api : adam_ args : (Tensor param, Tensor grad, Tensor learning_rate, Tensor moment1, Tensor moment2, Tensor beta1_pow, Tensor beta2_pow, Tensor master_param, Tensor skip_update, Scalar beta1, Scalar beta2, Scalar epsilon, bool lazy_mode, int64_t min_row_size_to_use_multithread, bool multi_precision, bool use_global_beta_pow) output : Tensor(param_out), Tensor(moment1_out), Tensor(moment2_out), Tensor(beta1_pow_out), Tensor(beta2_pow_out), Tensor(master_param_outs) infer_meta : func : AdamInferMeta kernel : func : adam {dense, dense, dense, dense, dense, dense, dense, dense, dense -> dense, dense, dense, dense, dense, dense}, adam_dense_param_sparse_grad {dense, selected_rows, dense, dense, dense, dense, dense, dense, dense -> dense, dense, dense, dense, dense, dense} data_type : param optional : master_param, skip_update inplace : (param -> param_out), (moment1 -> moment1_out), (moment2 -> moment2_out), (beta1_pow -> beta1_pow_out), (beta2_pow -> beta2_pow_out), (master_param -> master_param_outs) - api : adamax args : (Tensor param, Tensor grad, Tensor learning_rate, Tensor moment, Tensor inf_norm, Tensor beta1_pow, float beta1, float beta2, float epsilon) output : Tensor(param_out), Tensor(avg_squared_grad_out), Tensor(avg_squared_update_out) infer_meta : func : AdamaxInferMeta kernel : func : adamax - api : adamw args : (Tensor param, Tensor grad, Tensor learning_rate, Tensor moment1, Tensor moment2, Tensor beta1_pow, Tensor beta2_pow, Tensor master_param, Tensor skip_update, Scalar beta1, Scalar beta2, Scalar epsilon, float lr_ratio, float coeff, bool with_decay, bool lazy_mode, int64_t min_row_size_to_use_multithread, bool multi_precision, bool use_global_beta_pow) output : Tensor(param_out), Tensor(moment1_out), Tensor(moment2_out), Tensor(beta1_pow_out), Tensor(beta2_pow_out), Tensor(master_param_outs) optional : master_param, skip_update invoke : adamw_impl(param, grad, learning_rate, moment1, moment2, beta1_pow, beta2_pow, master_param, skip_update, beta1, beta2, epsilon, lr_ratio, coeff, with_decay, lazy_mode, min_row_size_to_use_multithread, multi_precision, use_global_beta_pow) - api : add args : (Tensor x, Tensor y) output : Tensor infer_meta : func : ElementwiseInferMeta kernel : func : add backward : add_grad - api : add_n args : (Tensor[] x) output : Tensor infer_meta : func : AddNInferMeta kernel : func : add_n backward : add_n_grad - api : addmm args : (Tensor input, Tensor x, Tensor y, float alpha, float beta) output : Tensor infer_meta : func : AddmmInferMeta kernel : func : addmm backward : addmm_grad - api : affine_grid args : (Tensor input, IntArray outputShape, bool use_cudnn=true, bool align_corners=true) output : Tensor infer_meta : func : AffineGridInferMeta param : [input, outputShape, align_corners] kernel : func : affine_grid param : [input, outputShape, align_corners] data_type : input use_gpudnn: use_cudnn backward : affine_grid_grad - api : all args : (Tensor x, int64_t[] dims={}, bool keep_dim=false) output : Tensor(out) infer_meta : func : ReduceInferMeta kernel : func : all - api : allclose args : (Tensor x, Tensor y, Scalar rtol, Scalar atol, bool equal_nan) output : Tensor(out) infer_meta : func : AllValueCompareInferMeta param: [x, y] kernel : func : allclose - api : amax args : (Tensor x, int64_t[] dims={}, bool keep_dim=false) output : Tensor(out) infer_meta : func : ReduceInferMeta kernel : func : amax backward : amax_grad - api : amin args : (Tensor x, int64_t[] dims={}, bool keep_dim=false) output : Tensor(out) infer_meta : func : ReduceInferMeta kernel : func : amin backward : amin_grad - api : angle args : (Tensor x) output : Tensor infer_meta : func : RealAndImagInferMeta kernel : func : angle backward : angle_grad - api : any args : (Tensor x, int64_t[] dims={}, bool keep_dim=false) output : Tensor(out) infer_meta : func : ReduceInferMeta kernel : func : any - api : arange args : (Tensor start, Tensor end, Tensor step, DataType dtype, Place place={}) output : Tensor infer_meta : func : ArangeInferMeta param : [start, end, step] kernel : func : arange param : [start, end, step] data_type : dtype backend : place data_transform : support_trans_dtype : start, end, step # arg_max - api : argmax args : (Tensor x, int64_t axis, bool keepdims, bool flatten, int dtype) output : Tensor infer_meta : func : ArgMinMaxInferMeta kernel : func : arg_max # arg_min - api : argmin args : (Tensor x, int64_t axis, bool keepdims, bool flatten, int dtype) output : Tensor infer_meta : func : ArgMinMaxInferMeta kernel : func : arg_min - api : argsort args : (Tensor x, int axis=-1, bool descending=false) output : Tensor(out), Tensor(indices) infer_meta : func : ArgsortInferMeta kernel : func : argsort backward : argsort_grad - api : as_complex args : (Tensor x) output : Tensor infer_meta : func : AsComplexInferMeta kernel : func : as_complex backward : as_complex_grad - api : as_real args : (Tensor x) output : Tensor infer_meta : func : AsRealInferMeta kernel : func : as_real backward : as_real_grad # asin - api : asin args : (Tensor x) output : Tensor infer_meta : func : UnchangedInferMeta kernel : func : asin backward : asin_grad # asinh - api : asinh args : (Tensor x) output : Tensor infer_meta : func : UnchangedInferMeta kernel : func : asinh backward : asinh_grad # assign - api : assign args : (Tensor x) output : Tensor infer_meta : func : UnchangedInferMeta kernel : func : assign backward : assign_grad - api : assign_out_ args : (Tensor x, Tensor output) output : Tensor(out) infer_meta : func : UnchangedInferMeta param : [x] kernel : func : assign param : [x] inplace : (output -> out) backward : assign_out__grad # assgin_value - api : assign_value_ args : (Tensor output, int[] shape, DataType dtype, Scalar[] values, Place place = {}) output : Tensor(out) inplace: (output -> out) infer_meta : func : AssignValueInferMeta param : [shape, dtype] kernel : func : assign_value param : [shape, dtype, values] data_type : dtype backend : place > output # atan - api : atan args : (Tensor x) output : Tensor infer_meta : func : UnchangedInferMeta kernel : func : atan backward : atan_grad # atanh - api : atanh args : (Tensor x) output : Tensor infer_meta : func : UnchangedInferMeta kernel : func : atanh backward : atanh_grad # auc - api : auc args : (Tensor x, Tensor label, Tensor stat_pos, Tensor stat_neg, Tensor ins_tag_weight, str curve, int num_thresholds, int slide_steps) output : Tensor(auc), Tensor(stat_pos_out), Tensor(stat_neg_out) infer_meta : func : AucInferMeta kernel : func : auc optional : ins_tag_weight #average_accumulates - api : average_accumulates_ args : (Tensor param, Tensor in_sum_1, Tensor in_sum_2, Tensor in_sum_3, Tensor in_num_accumulates, Tensor in_old_num_accumulates, Tensor in_num_updates, float average_window, int64_t max_average_window, int64_t min_average_window) output : Tensor(out_sum_1), Tensor(out_sum_2), Tensor(out_sum_3), Tensor(out_num_accumulates), Tensor(out_old_num_accumulates), Tensor(out_num_updates) infer_meta: func : AverageAccumulatesInferMeta kernel : func : average_accumulates {dense, dense, dense, dense, dense ,dense, dense -> dense, dense, dense, dense, dense, dense} data_type : param inplace : (in_sum_1 -> out_sum_1), (in_sum_2 -> out_sum_2), (in_sum_3 -> out_sum_3), (in_num_accumulates -> out_num_accumulates), (in_old_num_accumulates -> out_old_num_accumulates), (in_num_updates -> out_num_updates) # batch_norm - api : batch_norm args : (Tensor x, Tensor scale, Tensor bias, Tensor mean, Tensor variance, float momentum, float epsilon, str data_layout, bool is_test, bool use_global_stats, bool trainable_statistics, bool fuse_with_relu) output : Tensor(out), Tensor(mean_out), Tensor(variance_out), Tensor(saved_mean), Tensor(saved_variance), Tensor(reserve_space) invoke : batch_norm_impl(x, scale, bias, mean, variance, momentum, epsilon, data_layout, is_test, use_global_stats, trainable_statistics, fuse_with_relu) backward : batch_norm_grad - api : bce_loss args : (Tensor input, Tensor label) output : Tensor infer_meta : func : BCELossInferMeta kernel : func : bce_loss backward : bce_loss_grad - api : bilinear_tensor_product args : (Tensor x, Tensor y, Tensor weight, Tensor bias) output : Tensor infer_meta : func : BilinearTensorProductInferMeta kernel : func : bilinear_tensor_product optional : bias backward : bilinear_tensor_product_grad # bitwise_and - api : bitwise_and args : (Tensor x, Tensor y) output : Tensor infer_meta : func : ElementwiseInferMeta kernel : func : bitwise_and # bitwise_not - api : bitwise_not args : (Tensor x) output : Tensor infer_meta : func : UnchangedInferMeta kernel : func : bitwise_not # bitwise_or - api : bitwise_or args : (Tensor x, Tensor y) output : Tensor infer_meta : func : ElementwiseInferMeta kernel : func : bitwise_or # bitwise_xor - api : bitwise_xor args : (Tensor x, Tensor y) output : Tensor infer_meta : func : ElementwiseInferMeta kernel : func : bitwise_xor # bmm - api : bmm args : (Tensor x, Tensor y) output : Tensor infer_meta : func : BmmInferMeta kernel : func : bmm backward : bmm_grad # box_coder - api : box_coder args : (Tensor prior_box, Tensor prior_box_var, Tensor target_box, str code_type, bool box_normalized, int axis, float[] variance) output : Tensor(output_box) infer_meta : func : BoxCoderInferMeta kernel : func : box_coder optional : prior_box_var # brelu - api : brelu args : (Tensor x, float t_min, float t_max) output : Tensor infer_meta : func : UnchangedInferMeta param : [x] kernel : func : brelu backward : brelu_grad - api : cast args : (Tensor x, DataType out_dtype) output : Tensor infer_meta : func : CastInferMeta kernel : func : cast param : [x, out_dtype] data_type : x backward : cast_grad - api : ceil args : (Tensor x) output : Tensor(out) infer_meta : func : UnchangedInferMeta kernel : func : ceil backward : ceil_grad - api : celu args : (Tensor x, float alpha) output : Tensor(out) infer_meta : func : UnchangedInferMeta param: [x] kernel : func : celu backward : celu_grad - api : clip args : (Tensor x, Scalar(float) min, Scalar(float) max) output : Tensor(out) inplace : (x -> out) infer_meta : func : UnchangedInferMeta param : [x] kernel : func : clip backward : clip_grad - api : clip_by_norm args : (Tensor x, float max_norm) output : Tensor(out) infer_meta : func : ClipByNormInferMeta kernel : func : clip_by_norm - api : complex args : (Tensor x, Tensor y) output : Tensor infer_meta : func : ComplexInferMeta kernel : func : complex backward : complex_grad - api : concat args : (Tensor[] x, Scalar(int64_t) axis) output : Tensor infer_meta : func : ConcatInferMeta param : [x, axis] kernel : func : concat backward : concat_grad - api : conj args : (Tensor x) output : Tensor infer_meta : func : UnchangedInferMeta kernel : func : conj backward : conj_grad - api : conv2d args : (Tensor input, Tensor filter, int[] strides, int[] paddings, str paddding_algorithm, int groups, int[] dilations, str data_format, bool use_addto, int workspace_size_MB, bool exhaustive_search) output : Tensor invoke : conv2d_impl(input, filter, strides, paddings, paddding_algorithm, groups, dilations, data_format, use_addto, workspace_size_MB, exhaustive_search) backward : conv2d_grad - api : conv2d_transpose args : (Tensor x, Tensor filter, int[] strides, int[] paddings, int[] output_padding, int[] output_size, str padding_algorithm, int groups, int[] dilations, str data_format) output : Tensor(out) infer_meta : func : ConvTransposeInferMeta kernel : func : conv2d_transpose use_gpudnn : true backward : conv2d_transpose_grad - api : conv3d args : (Tensor input, Tensor filter, int[] strides, int[] paddings, str paddding_algorithm, int groups, int[] dilations, str data_format, bool use_addto, int workspace_size_MB, bool exhaustive_search) output : Tensor invoke : conv3d_impl(input, filter, strides, paddings, paddding_algorithm, groups, dilations, data_format, use_addto, workspace_size_MB, exhaustive_search) backward : conv3d_grad - api : conv3d_transpose args : (Tensor x, Tensor filter, int[] strides, int[] paddings, int[] output_padding, int[] output_size, str padding_algorithm, int groups, int[] dilations, str data_format) output : Tensor(out) infer_meta : func : ConvTransposeInferMeta kernel : func : conv3d_transpose use_gpudnn : true backward : conv3d_transpose_grad - api : copy_to args : (Tensor x, Place place, bool blocking) output : Tensor invoke : copy_to_impl(x, place, blocking) # cos - api : cos args : (Tensor x) output : Tensor infer_meta : func : UnchangedInferMeta kernel : func : cos backward : cos_grad # cosh - api : cosh args : (Tensor x) output : Tensor infer_meta : func : UnchangedInferMeta kernel : func : cosh backward : cosh_grad - api : crop_tensor args : (Tensor x, IntArray shape, IntArray offsets) output : Tensor(out) infer_meta : func : CropTensorInferMeta kernel : func : crop_tensor data_type : x backward : crop_tensor_grad # Part of python API paddle.nn.functional.cross_entropy - api : cross_entropy_with_softmax args : (Tensor input, Tensor label, bool soft_label, bool use_softmax, bool numeric_stable_mode, int ignore_index, int axis) output : Tensor(softmax), Tensor(loss) infer_meta : func : CrossEntropyWithSoftmaxInferMeta kernel : func : cross_entropy_with_softmax data_type : input backward : cross_entropy_with_softmax_grad - api : cumprod args : (Tensor x, int dim) output : Tensor(out) infer_meta : func : UnchangedInferMeta param: [x] kernel : func : cumprod backward : cumprod_grad - api : cumsum args : (Tensor x, int axis, bool flatten, bool exclusive, bool reverse) output : Tensor(out) infer_meta : func : CumInferMeta kernel : func : cumsum backward : cumsum_grad # decode_jpeg - api : decode_jpeg args : (Tensor x, str mode) output : Tensor(out) infer_meta : func : DecodeJpegInferMeta kernel : func : decode_jpeg - api : deformable_conv args : (Tensor x, Tensor offset, Tensor filter, Tensor mask, int[] strides, int[] paddings, int[] dilations, int deformable_groups, int groups, int im2col_step) output : Tensor(out) infer_meta : func : DeformableConvInferMeta kernel : func : deformable_conv data_type : x optional : mask backward : deformable_conv_grad - api : depthwise_conv2d args : (Tensor x, Tensor filter, int[] strides, int[] paddings, str padding_algorithm, int groups, int[] dilations, str data_format, bool use_addto, int workspace_size_MB, bool exhaustive_search, bool fuse_relu, bool use_gpudnn) output : Tensor(out) infer_meta : func : ConvInferMeta param : [x, filter, strides, paddings, padding_algorithm, groups, dilations, data_format, use_addto, workspace_size_MB, exhaustive_search] kernel : func : depthwise_conv2d param : [x, filter, strides, paddings, padding_algorithm, groups, dilations, data_format, use_addto, workspace_size_MB, exhaustive_search, fuse_relu] use_gpudnn : use_gpudnn backward : depthwise_conv2d_grad - api : depthwise_conv2d_transpose args : (Tensor x, Tensor filter, int[] strides, int[] paddings, int[] output_padding, int[] output_size, str padding_algorithm, int groups, int[] dilations, str data_format) output : Tensor(out) infer_meta : func : ConvTransposeInferMeta kernel : func : depthwise_conv2d_transpose backward : depthwise_conv2d_transpose_grad - api : det args : (Tensor x) output : Tensor infer_meta : func : UnchangedInferMeta kernel : func : determinant backward : det_grad - api : diag_embed args : (Tensor x, int offset, int dim1, int dim2) output : Tensor infer_meta : func : DiagEmbedInferMeta kernel : func : diag_embed - api : divide args : (Tensor x, Tensor y) output : Tensor infer_meta : func : ElementwiseInferMeta kernel : func : divide backward : divide_grad - api : dropout args : (Tensor x, Tensor seed_tensor, float p, bool is_test, str mode, int seed, bool fix_seed) output : Tensor(out), Tensor(mask) infer_meta : func : DropoutInferMeta kernel : func : dropout data_type : x optional : seed_tensor backward : dropout_grad - api : edit_distance args : (Tensor hyps, Tensor refs, Tensor hypslength, Tensor refslength, bool normalized = false) output : Tensor(sequencenum), Tensor(out) infer_meta : func : EditDistanceInferMeta kernel : func : edit_distance data_type: DataType::FLOAT32 optional : hypslength, refslength # eigh - api : eigh args : (Tensor x, str uplo) output : Tensor(out_w), Tensor(out_v) infer_meta : func : EighInferMeta kernel : func : eigh backward : eigh_grad - api : eigvals args : (Tensor x) output : Tensor infer_meta : func : EigvalsInferMeta kernel : func : eigvals - api : eigvalsh args : (Tensor x, str uplo, bool is_test) output : Tensor(eigenvalues), Tensor(eigenvectors) infer_meta : func : EigvalshInferMeta kernel : func : eigvalsh backward : eigvalsh_grad - api : einsum args : (Tensor[] x, str equation) output : Tensor, Tensor[]{x.size()}, Tensor[]{x.size()} infer_meta : func : EinsumRawInferMeta param : [x, equation] kernel : func : einsum_raw backward : einsum_grad - api : elementwise_pow args : (Tensor x, Tensor y) output : Tensor(out) infer_meta : func : ElementwiseInferMeta kernel : func : elementwise_pow backward : elementwise_pow_grad # elu - api : elu args : (Tensor x, float alpha) output : Tensor infer_meta : func : UnchangedInferMeta param : [x] kernel : func : elu backward : elu_grad - api : embedding args : (Tensor x, Tensor weight, int64_t padding_idx=-1, bool sparse=false) output : Tensor invoke : embedding_impl(x, weight, padding_idx, sparse) backward : embedding_grad - api : empty args : (IntArray shape, DataType dtype=DataType::FLOAT32, Place place=CPUPlace()) output: Tensor infer_meta : func : CreateInferMeta param : [shape, dtype] kernel : func : empty param : [shape, dtype] data_type : dtype backend : place - api : empty_like args : (Tensor x, DataType dtype = DataType::UNDEFINED, Place place = {}) output: Tensor infer_meta : func : CreateLikeInferMeta param : [x, dtype] kernel : func : empty_like param : [x, dtype] data_type : dtype > x backend : place > x - api : equal args : (Tensor x, Tensor y, int axis = -1) output : Tensor infer_meta : func : CompareInferMeta kernel : func : equal - api : equal_all args : (Tensor x, Tensor y) output : Tensor infer_meta : func : CompareAllInferMeta kernel : func : equal_all - api : erfinv args : (Tensor x) output : Tensor(out) infer_meta : func : UnchangedInferMeta kernel : func : erfinv inplace : (x -> out) backward : erfinv_grad # exp - api : exp args : (Tensor x) output : Tensor infer_meta : func : UnchangedInferMeta kernel : func : exp backward : exp_grad # expand - api : expand args : (Tensor x, IntArray shape) output : Tensor infer_meta : func : ExpandInferMeta kernel : func : expand backward : expand_grad # expand_as - api : expand_as args : (Tensor x, Tensor y, int[] target_shape) output : Tensor infer_meta : func : ExpandAsInferMeta kernel : func : expand_as optional : y backward : expand_as_grad - api : expm1 args : (Tensor x) output : Tensor infer_meta : func : UnchangedInferMeta param : [x] kernel : func : expm1 backward : expm1_grad - api : exponential_ args : (Tensor x, float lambda) output : Tensor(out) infer_meta : func : UnchangedInferMeta param : [x] kernel : func : exponential inplace : (x -> out) backward : exponential__grad - api : eye args : (int64_t num_rows, int64_t num_columns, DataType dtype=DataType::FLOAT32, Place place={}) output : Tensor(out) infer_meta : func : EyeInferMeta param : [num_rows, num_columns, dtype] kernel : func : eye param : [num_rows, num_columns, dtype] data_type : dtype backend : place - api : flatten args : (Tensor x, int start_axis, int stop_axis) output : Tensor(out), Tensor(xshape) infer_meta : func : FlattenWithXShapeInferMeta kernel : func : flatten_with_xshape backend : x inplace : (x -> out) view : (x -> out) intermediate : xshape backward : flatten_grad # flip - api : flip args : (Tensor x, int[] axis) output : Tensor infer_meta : func : FlipInferMeta kernel : func : flip backward : flip_grad - api : floor args : (Tensor x) output : Tensor(out) infer_meta : func : UnchangedInferMeta kernel : func : floor backward : floor_grad - api : floor_divide args : (Tensor x, Tensor y) output : Tensor(out) infer_meta : func : ElementwiseInferMeta kernel : func : floor_divide - api : fmax args : (Tensor x, Tensor y, int axis) output : Tensor(out) infer_meta : param: [x, y] func : ElementwiseInferMeta kernel : func : fmax backward : fmax_grad - api : fmin args : (Tensor x, Tensor y, int axis) output : Tensor(out) infer_meta : param: [x, y] func : ElementwiseInferMeta kernel : func : fmin backward : fmin_grad - api : frame args : (Tensor x, int frame_length, int hop_length, int axis) output : Tensor(out) infer_meta : func : FrameInferMeta kernel : func : frame backward : frame_grad - api : frobenius_norm args : (Tensor x, int64_t[] axis, bool keep_dim, bool reduce_all) output : Tensor(out) infer_meta : func : ReduceInferMetaBase kernel : func : frobenius_norm backward : frobenius_norm_grad - api : full args : (IntArray shape, Scalar value, DataType dtype=DataType::FLOAT32, Place place=CPUPlace()) output: Tensor infer_meta : func : CreateInferMeta param : [shape, dtype] kernel : func : full param : [shape, value, dtype] data_type : dtype backend : place - api : full_batch_size_like args : (Tensor input, int[] shape, DataType dtype, Scalar value, int input_dim_idx, int output_dim_idx, Place place=CPUPlace()) output: Tensor infer_meta : func : FullBatchSizeLikeInferMeta param : [input, shape, value, dtype, input_dim_idx, output_dim_idx] kernel : func : full_batch_size_like param : [input, shape, value, dtype, input_dim_idx, output_dim_idx] data_type : dtype backend : place - api : full_like args : (Tensor x, Scalar value, DataType dtype = DataType::UNDEFINED, Place place = {}) output: Tensor infer_meta : func : CreateLikeInferMeta param : [x, dtype] kernel : func : full_like param : [x, value, dtype] data_type : dtype > x backend : place > x data_transform : skip_transform : x - api : gather args : (Tensor x, Tensor index, Scalar(int) axis=0) output : Tensor(out) infer_meta : func : GatherInferMeta kernel : func : gather data_type: x backward : gather_grad - api : gather_nd args : (Tensor x, Tensor index) output : Tensor infer_meta : func : GatherNdInferMeta kernel : func : gather_nd data_type : x backward : gather_nd_grad - api : gather_tree args : (Tensor ids, Tensor parents) output : Tensor infer_meta : func : GatherTreeMeta kernel : func : gather_tree - api : gaussian_random args : (IntArray shape, float mean, float std, int seed, DataType dtype, Place place={}) output: Tensor infer_meta : func : GaussianRandomInferMeta param : [shape, mean, std, seed, dtype] kernel : func : gaussian_random param : [shape, mean, std, seed, dtype] data_type : dtype backend : place - api : gelu args : (Tensor x, bool approximate) output : Tensor(out) infer_meta : func : UnchangedInferMeta param: [x] kernel : func : gelu backward : gelu_grad - api : graph_send_recv args : (Tensor x, Tensor src_index, Tensor dst_index, str pool_type = "SUM", int64_t out_size = 0) output : Tensor(out), Tensor(dst_count) infer_meta : func : GraphSendRecvInferMeta kernel : func : graph_send_recv data_type : x intermediate : dst_count backward : graph_send_recv_grad - api : greater_equal args : (Tensor x, Tensor y, int axis = -1) output : Tensor infer_meta : func : CompareInferMeta kernel : func : greater_equal - api : greater_than args : (Tensor x, Tensor y, int axis = -1) output : Tensor infer_meta : func : CompareInferMeta kernel : func : greater_than # grid sample - api : grid_sample args : (Tensor x, Tensor grid, str mode, str padding_mode, bool align_corners) output : Tensor(out) infer_meta : func : GridSampleBaseInferMeta param : [x, grid] kernel: func : grid_sample data_type : x backward : grid_sample_grad - api : group_norm args : (Tensor x, Tensor scale, Tensor bias, float epsilon, int groups, str data_layout) output : Tensor(y), Tensor(mean), Tensor(variance) infer_meta : func : GroupNormInferMeta kernel : func : group_norm optional : scale, bias intermediate : mean, variance backward : group_norm_grad - api : gumbel_softmax args : (Tensor x, float temperature, bool hard, int axis) output : Tensor infer_meta : func : GumbelSoftmaxInferMeta kernel : func : gumbel_softmax backward : gumbel_softmax_grad # hard_shrink - api : hard_shrink args : (Tensor x, float threshold) output : Tensor infer_meta : func : UnchangedInferMeta param : [x] kernel : func : hard_shrink backward : hard_shrink_grad # hard_sigmoid - api : hard_sigmoid args : (Tensor x, float slope, float offset) output : Tensor infer_meta : func : UnchangedInferMeta param : [x] kernel : func : hard_sigmoid backward : hard_sigmoid_grad - api : hard_swish args : (Tensor x, float threshold = 6.0, float scale = 6.0, float offset = 3.0) output : Tensor infer_meta : func : UnchangedInferMeta param : [x] kernel : func : hard_swish backward : hard_swish_grad # hierarchical_sigmoid - api : hierarchical_sigmoid args : (Tensor x, Tensor w, Tensor label, Tensor path, Tensor code, Tensor bias, int num_classes, bool remote_prefetch, int trainer_id, int64_t[] height_sections, str[] epmap, str[] table_names, bool is_sparse) output : Tensor(out), Tensor(pre_out), Tensor(w_out) infer_meta : func : HierarchicalSigmoidInferMeta optional: path, code, bias kernel : func : hierarchical_sigmoid data_type : x backward : hierarchical_sigmoid_grad # histogram - api : histogram args : (Tensor x, int64_t bins, int min, int max) output : Tensor infer_meta : func : HistogramInferMeta kernel : func : histogram - api : huber_loss args : (Tensor input, Tensor label, float delta) output : Tensor(out), Tensor(residual) infer_meta : func : HuberLossInferMeta kernel : func : huber_loss backward : huber_loss_grad - api : imag args : (Tensor x) output : Tensor infer_meta : func : RealAndImagInferMeta kernel : func : imag backward : imag_grad # increment - api : increment args : (Tensor x, float value) output : Tensor infer_meta : func : IncrementInferMeta kernel : func : increment - api : index_sample args : (Tensor x, Tensor index) output : Tensor infer_meta : func : IndexSampleInferMeta kernel : func : index_sample data_type : x backward : index_sample_grad - api : index_select args : (Tensor x, Tensor index, int dim) output : Tensor(out) infer_meta : func : IndexSelectInferMeta kernel : func : index_select data_type : x backward : index_select_grad - api : instance_norm args : (Tensor x, Tensor scale, Tensor bias, float epsilon) output : Tensor(y), Tensor(saved_mean), Tensor(saved_variance) infer_meta : func : InstanceNormInferMeta kernel : func : instance_norm data_type : x optional : scale, bias intermediate : saved_mean, saved_variance backward : instance_norm_grad - api : inverse args : (Tensor x) output : Tensor(out) infer_meta : func : InverseInferMeta kernel : func : inverse backward : inverse_grad # is_empty - api : is_empty args : (Tensor x) output : Tensor infer_meta : func : IsEmptyInferMeta kernel : func : is_empty - api : isclose args : (Tensor x, Tensor y, Scalar rtol, Scalar atol, bool equal_nan) output : Tensor(out) infer_meta : func : ValueCompareInferMeta param: [x, y] kernel : func : isclose # isfinite - api : isfinite args : (Tensor x) output : Tensor infer_meta : func : IsfiniteInferMeta kernel : func : isfinite {dense -> dense}, infinite_sr {selected_rows -> selected_rows} # isinf - api : isinf args : (Tensor x) output : Tensor infer_meta : func : IsfiniteInferMeta kernel : func : isinf {dense -> dense}, isinf_sr {selected_rows -> selected_rows} # isnan - api : isnan args : (Tensor x) output : Tensor infer_meta : func : IsfiniteInferMeta kernel : func : isnan {dense -> dense}, isnan_sr {selected_rows -> selected_rows} - api : kldiv_loss args : (Tensor x, Tensor label, str reduction) output : Tensor(out) infer_meta : func : KLDivInferMeta kernel : func : kldiv_loss data_type : x backward : kldiv_loss_grad - api : kron args : (Tensor x, Tensor y) output : Tensor infer_meta : func : KronInferMeta kernel : func : kron backward : kron_grad - api : kthvalue args : (Tensor x, int k, int axis, bool keepdim) output : Tensor(out), Tensor(indices) infer_meta : func : KthvalueInferMeta kernel : func : kthvalue backward : kthvalue_grad # label_smooth - api : label_smooth args : (Tensor label, Tensor prior_dist, float epsilon) output : Tensor infer_meta : func : UnchangedInferMeta param : [label] kernel : func : label_smooth data_type : label optional : prior_dist backward : label_smooth_grad - api : layer_norm args : (Tensor x, Tensor scale, Tensor bias, float epsilon, int begin_norm_axis, bool is_test) output : Tensor(out), Tensor(mean), Tensor(variance) infer_meta : func : LayerNormInferMeta kernel : func : layer_norm data_type : x backward : layer_norm_grad optional : scale, bias # leaky_relu - api : leaky_relu args : (Tensor x, float alpha) output : Tensor infer_meta : func : UnchangedInferMeta param : [x] kernel : func : leaky_relu backward : leaky_relu_grad - api : lerp args : (Tensor x, Tensor y, Tensor weight) output : Tensor infer_meta : func : LerpInferMeta kernel : func : lerp backward : lerp_grad - api : less_equal args : (Tensor x, Tensor y, int axis = -1) output : Tensor infer_meta : func : CompareInferMeta kernel : func : less_equal - api : less_than args : (Tensor x, Tensor y, int axis = -1) output : Tensor infer_meta : func : CompareInferMeta kernel : func : less_than - api : linspace args : (Tensor start, Tensor stop, Tensor number, DataType dtype) output : Tensor infer_meta : func : LinspaceInferMeta kernel : func : linspace data_type : dtype - api : log args : (Tensor x) output : Tensor infer_meta : func : UnchangedInferMeta kernel : func : log backward: log_grad - api : log10 args : (Tensor x) output : Tensor infer_meta : func : UnchangedInferMeta kernel : func : log10 backward: log10_grad - api : log1p args : (Tensor x) output : Tensor infer_meta : func : UnchangedInferMeta kernel : func : log1p backward: log1p_grad - api : log2 args : (Tensor x) output : Tensor infer_meta : func : UnchangedInferMeta kernel : func : log2 backward: log2_grad # log_loss - api : log_loss args : (Tensor input, Tensor label, float epsilon) output : Tensor infer_meta : func : LogLossInferMeta kernel : func : log_loss backward : log_loss_grad - api : log_softmax args : (Tensor x, int axis) output : Tensor(out) infer_meta : func : UnchangedInferMetaCheckAxis kernel : func : log_softmax backward : log_softmax_grad - api : logcumsumexp args : (Tensor x, int axis, bool flatten, bool exclusive, bool reverse) output : Tensor(out) infer_meta : func : CumInferMeta kernel : func : logcumsumexp backward : logcumsumexp_grad # logical_and - api : logical_and args : (Tensor x, Tensor y) output : Tensor infer_meta : func : ElementwiseInferMeta kernel : func : logical_and # logical_not - api : logical_not args : (Tensor x) output : Tensor infer_meta : func : UnchangedInferMeta kernel : func : logical_not # logical_or - api : logical_or args : (Tensor x, Tensor y) output : Tensor infer_meta : func : ElementwiseInferMeta kernel : func : logical_or # logical_xor - api : logical_xor args : (Tensor x, Tensor y) output : Tensor infer_meta : func : ElementwiseInferMeta kernel : func : logical_xor # logit - api : logit args : (Tensor x, float eps = 1e-6f) output : Tensor infer_meta : func : UnchangedInferMeta param : [x] kernel : func : logit backward : logit_grad # logsigmoid - api : logsigmoid args : (Tensor x) output : Tensor infer_meta : func : UnchangedInferMeta kernel : func : logsigmoid backward : logsigmoid_grad - api : logsumexp args : (Tensor x, int64_t[] axis, bool keepdim, bool reduce_all) output : Tensor(out) infer_meta : func : LogsumexpInferMeta kernel : func : logsumexp backward : logsumexp_grad - api : lstsq args : (Tensor x, Tensor y, Scalar rcond, str driver) output : Tensor(solution), Tensor(residuals), Tensor(rank), Tensor(singular_values) infer_meta : func : LstsqInferMeta dtype : x kernel : func : lstsq - api : lu args : (Tensor x, bool pivot) output : Tensor(out), Tensor(pivots), Tensor(infos) infer_meta : func : LUInferMeta kernel : func : lu backward : lu_grad - api : lu_unpack args : (Tensor x, Tensor pivots, bool unpack_ludata, bool unpack_pivots) output : Tensor(pmat), Tensor(l), Tensor(u) infer_meta : func : LUUnpackInferMeta kernel : func : lu_unpack data_type : x backward : lu_unpack_grad # masked_select - api : masked_select args : (Tensor x, Tensor mask) output : Tensor infer_meta : func : MaskedSelectInferMeta kernel : func : masked_select data_type : x backward : masked_select_grad - api : matmul args : (Tensor x, Tensor y, bool transpose_x = false, bool transpose_y = false) output : Tensor infer_meta : func : MatmulInferMeta kernel : func : matmul backward : matmul_grad - api : matrix_nms args : (Tensor bboxes, Tensor scores, float score_threshold, int nms_top_k, int keep_top_k, float post_threshold=0., bool use_gaussian = false, float gaussian_sigma = 2.0, int background_label = 0, bool normalized = true) output : Tensor(out), Tensor(index), Tensor(roisnum) infer_meta : func : MatrixNMSInferMeta kernel : func : matrix_nms # matrix_power - api : matrix_power args : (Tensor x, int n) output : Tensor infer_meta : func : UnchangedInferMeta param : [x] kernel : func : matrix_power backward : matrix_power_grad - api : matrix_rank args : (Tensor x, float tol, bool use_default_tol=true, bool hermitian=false) output : Tensor(out) infer_meta : func : MatrixRankInferMeta param : [x, use_default_tol, hermitian] kernel : func : matrix_rank - api : matrix_rank_tol args : (Tensor x, Tensor atol_tensor, bool use_default_tol=true, bool hermitian=false) output : Tensor(out) infer_meta : func : MatrixRankTolInferMeta kernel : func : matrix_rank_tol - api : max args : (Tensor x, int64_t[] dims={}, bool keep_dim=false) output : Tensor(out) infer_meta : func : ReduceInferMeta kernel : func : max backward : max_grad - api : max_pool2d_with_index args : (Tensor x, int[] kernel_size, int[] strides, int[] paddings, bool global_pooling, bool adaptive) output : Tensor(out), Tensor(mask) infer_meta : func : MaxPoolWithIndexInferMeta kernel : func : max_pool2d_with_index backward : max_pool2d_with_index_grad - api : max_pool3d_with_index args : (Tensor x, int[] kernel_size, int[] strides, int[] paddings, bool global_pooling, bool adaptive) output : Tensor(out), Tensor(mask) infer_meta : func : MaxPoolWithIndexInferMeta kernel : func : max_pool3d_with_index backward : max_pool3d_with_index_grad - api : maximum args : (Tensor x, Tensor y) output : Tensor(out) infer_meta : func : ElementwiseInferMeta kernel : func : maximum backward : maximum_grad - api : maxout args : (Tensor x, int groups, int axis) output : Tensor(out) infer_meta : func : MaxOutInferMeta kernel : func : maxout backward : maxout_grad - api : mean args : (Tensor x, int64_t[] dims={}, bool keep_dim=false) output : Tensor(out) infer_meta : func : ReduceInferMeta kernel : func : mean backward : mean_grad - api : mean_all args : (Tensor x) output : Tensor infer_meta : func : MeanAllInferMeta kernel : func : mean_all backward : mean_all_grad - api : meshgrid args : (Tensor[] inputs) output : Tensor[]{inputs.size()} infer_meta : func : MeshgridInferMeta kernel : func : meshgrid backward : meshgrid_grad - api : min args : (Tensor x, int64_t[] dims={}, bool keep_dim=false) output : Tensor(out) infer_meta : func : ReduceInferMeta kernel : func : min backward : min_grad - api : minimum args : (Tensor x, Tensor y) output : Tensor(out) infer_meta : func : ElementwiseInferMeta kernel : func : minimum backward : minimum_grad - api : mish args : (Tensor x, float lambda) output : Tensor infer_meta : func : UnchangedInferMeta param : [x] kernel : func : mish backward : mish_grad - api : mode args : (Tensor x, int axis, bool keepdim) output : Tensor(out), Tensor(indices) infer_meta : func : ModeInferMeta kernel : func : mode backward : mode_grad - api : modulo args : (Tensor x, Tensor y) output : Tensor infer_meta : func : ElementwiseInferMeta kernel : func : modulo backward : modulo_grad - api : momentum args : (Tensor param, Tensor grad, Tensor velocity, Tensor learning_rate, Tensor master_param, float mu, bool use_nesterov = false, str regularization_method = "", float regularization_coeff = 0.0, bool multi_precision = false, float rescale_grad = 1.0f) output : Tensor(param_out), Tensor(velocity_out), Tensor(master_param_out) invoke : momentum_impl(param, grad, velocity, learning_rate, master_param, mu, use_nesterov, regularization_method, regularization_coeff, multi_precision, rescale_grad) optional : master_param - api : multi_dot args : (Tensor[] x) output : Tensor infer_meta : func : MultiDotInferMeta kernel : func : multi_dot backward : multi_dot_grad - api : multiclass_nms3 args : (Tensor bboxes, Tensor scores, Tensor rois_num, float score_threshold, int nms_top_k, int keep_top_k, float nms_threshold=0.3, bool normalized=true, float nms_eta=1.0, int background_label=0) output : Tensor(out), Tensor(index), Tensor(nms_rois_num) infer_meta : func : MultiClassNMSInferMeta kernel : func : multiclass_nms3 optional : rois_num # multinomial - api : multinomial args : (Tensor x, int num_samples, bool replacement) output : Tensor infer_meta : func : MultinomialInferMeta kernel : func : multinomial - api : multiplex args : (Tensor[] ins, Tensor ids) output : Tensor infer_meta : func : MultiplexInferMeta kernel : func : multiplex data_type : ins backward : multiplex_grad - api : multiply args : (Tensor x, Tensor y) output : Tensor infer_meta : func : ElementwiseInferMeta kernel : func : multiply backward : multiply_grad - api : nll_loss args : (Tensor input, Tensor label, Tensor weight, int64_t ignore_index, str reduction) output : Tensor(out), Tensor(total_weight) infer_meta : func : NllLossRawInferMeta kernel : func : nll_loss data_type : input optional : weight backward : nll_loss_grad - api : nms args : (Tensor x, float threshold) output : Tensor(out) infer_meta : func : NMSInferMeta kernel : func : nms data_type : x - api : norm args : (Tensor x, int axis, float epsilon, bool is_test) output : Tensor(out), Tensor(norm) infer_meta : func : NormInferMeta kernel : func : norm intermediate : norm backward : norm_grad - api : not_equal args : (Tensor x, Tensor y, int axis = -1) output : Tensor infer_meta : func : CompareInferMeta kernel : func : not_equal - api : one_hot args : (Tensor x, Scalar(int) num_classes) output : Tensor infer_meta : func : OneHotInferMeta kernel : func : one_hot - api : ones_like args : (Tensor x, DataType dtype=DataType::UNDEFINED, Place place={}) output : Tensor invoke : full_like(x, 1, dtype, place) - api : p_norm args : (Tensor x, float porder, int axis, float epsilon, bool keepdim, bool asvector=false) output : Tensor(out) infer_meta : func : PNormInferMeta kernel : func : p_norm backward : p_norm_grad # pad - api : pad args : (Tensor x, int[] paddings, float pad_value) output : Tensor infer_meta : func : PadInferMeta kernel : func : pad backward : pad_grad - api : pad3d args : (Tensor x, IntArray paddings, str mode, float pad_value, str data_format) output : Tensor(out) infer_meta : func : Pad3dInferMeta kernel : func : pad3d backward : pad3d_grad # pixel_shuffle - api : pixel_shuffle args : (Tensor x, int upscale_factor, str data_format) output : Tensor infer_meta : func : PixelShuffleInferMeta kernel : func : pixel_shuffle backward : pixel_shuffle_grad - api : pool2d args : (Tensor x, int[] kernel_size, int[] strides, int[] paddings, bool ceil_mode, bool exclusive, str data_format, str pooling_type, bool global_pooling, bool adaptive, str padding_algorithm) output : Tensor(out) infer_meta : func : PoolInferMeta kernel : func : pool2d use_gpudnn : true backward : pool2d_grad # Used in adaptive_avg_pool2d API - api : pool2d_gpudnn_unused args : (Tensor x, int[] kernel_size, int[] strides, int[] paddings, bool ceil_mode, bool exclusive, str data_format, str pooling_type, bool global_pooling, bool adaptive, str padding_algorithm) output : Tensor(out) infer_meta : func : PoolInferMeta kernel : func : pool2d use_gpudnn : false backward : pool2d_grad_gpudnn_unused - api : pool3d args : (Tensor x, int[] kernel_size, int[] strides, int[] paddings, bool ceil_mode, bool exclusive, str data_format, str pooling_type, bool global_pooling, bool adaptive, str padding_algorithm) output : Tensor(out) infer_meta : func : PoolInferMeta kernel : func : pool3d use_gpudnn : true backward : pool3d_grad - api : pow args : (Tensor x, Scalar s) output : Tensor(out) infer_meta : func : UnchangedInferMeta param: [x] kernel : func : pow backward : pow_grad - api : prelu args : (Tensor x, Tensor alpha, str data_format, str mode) output : Tensor(out) infer_meta : func : PReluInferMeta kernel : func : prelu backward : prelu_grad - api : prior_box args : (Tensor input, Tensor image, float[] min_sizes, float[] aspect_ratios, float[] variances, float[] max_sizes = {}, bool flip=true, bool clip=true, float step_w=0.0, float step_h=0.0, float offset=0.5, bool min_max_aspect_ratios_order=false) output : Tensor(out), Tensor(var) infer_meta : func : PriorBoxInferMeta kernel : func : prior_box - api : psroi_pool args : (Tensor x, Tensor boxes, Tensor boxes_num, int pooled_height, int pooled_width, int output_channels, float spatial_scale) output : Tensor infer_meta : func : PsroiPoolInferMeta kernel : func : psroi_pool data_type : x optional : boxes_num backward : psroi_pool_grad # put_along_axis - api : put_along_axis args : (Tensor x, Tensor index, Tensor value, int axis, str reduce) output : Tensor infer_meta : func : UnchangedInferMeta param : [index] kernel : func : put_along_axis data_type : x backward : put_along_axis_grad - api : qr args : (Tensor x, str mode) output : Tensor(q), Tensor(r) infer_meta : func : QrInferMeta kernel : func : qr backward : qr_grad - api : randint args : (int low, int high, IntArray shape, DataType dtype=DataType::INT64, Place place={}) output : Tensor(out) infer_meta : func : RandintInferMeta param : [low, high, shape, dtype] kernel : func : randint param : [low, high, shape, dtype] data_type : dtype backend : place - api : randperm args : (int n, DataType dtype, Place place={}) output : Tensor infer_meta : func : RandpermInferMeta param : [n, dtype] kernel : func : randperm param : [n, dtype] data_type : dtype backend : place - api : real args : (Tensor x) output : Tensor infer_meta : func : RealAndImagInferMeta kernel : func : real backward : real_grad - api : reciprocal args : (Tensor x) output : Tensor infer_meta : func : UnchangedInferMeta kernel : func : reciprocal backward : reciprocal_grad # reduce_prod - api : reduce_prod args : (Tensor x, int64_t[] dims, bool keep_dim, bool reduce_all) output : Tensor infer_meta : func : ReduceInferMetaBase kernel : func : prod_raw backward : reduce_prod_grad - api : relu args : (Tensor x) output : Tensor(out) infer_meta : func : UnchangedInferMeta kernel : func : relu inplace : (x -> out) backward : relu_grad - api : relu6 args : (Tensor x, float threshold) output : Tensor infer_meta : func : UnchangedInferMeta param : [x] kernel : func : relu6 backward : relu6_grad - api : renorm args : (Tensor x, float p, int axis, float max_norm) output : Tensor infer_meta : func : UnchangedInferMeta param : [x] kernel : func : renorm backward : renorm_grad - api : repeat_interleave args : (Tensor x, int repeats, int dim) output : Tensor(out) infer_meta : func : RepeatInterleaveInferMeta param : [x,repeats, dim] kernel : func : repeat_interleave backward: repeat_interleave_grad - api : repeat_interleave_with_tensor_index args : (Tensor x, Tensor repeats, int dim) output : Tensor(out) infer_meta : func : RepeatInterleaveWithTensorIndexInferMeta param : [x,repeats, dim] kernel : func : repeat_interleave_with_tensor_index data_type : x backward: repeat_interleave_with_tensor_index_grad - api : reshape args : (Tensor x, IntArray shape) output : Tensor(out), Tensor(xshape) infer_meta : func : ReshapeWithXShapeInferMeta kernel : func : reshape_with_xshape inplace : (x -> out) view: (x -> out) intermediate : xshape backward: reshape_grad - api : reverse args : (Tensor x, int[] axis) output : Tensor infer_meta : func : ReverseInferMeta kernel : func : reverse backward : reverse_grad - api : reverse_array args : (Tensor[] x, int[] axis) output : Tensor[]{x.size()} infer_meta : func : ReverseArrayInferMeta kernel : func : reverse_array backward : reverse_array_grad - api : rmsprop_ args : (Tensor param, Tensor mean_square, Tensor grad, Tensor moment, Tensor learning_rate, Tensor mean_grad, float epsilon, float decay, float momentum, bool centered) output : Tensor(param_out), Tensor(moment_out), Tensor(mean_square_out), Tensor(mean_grad_out) infer_meta : func : RmspropInferMeta kernel : func : rmsprop {dense, dense, dense, dense, dense, dense -> dense, dense, dense, dense} rmsprop_dense_param_sparse_grad {dense, dense, selected_rows, dense, dense, dense -> dense, dense, dense, dense} optional : mean_grad inplace : (param -> param_out), (moment -> moment_out), (mean_square -> mean_square_out), (mean_grad -> mean_grad_out) - api : roi_align args : (Tensor x, Tensor boxes, Tensor boxes_num, int pooled_height, int pooled_width, float spatial_scale, int sampling_ratio, bool aligned) output : Tensor infer_meta : func : RoiAlignInferMeta kernel : func : roi_align data_type : x optional : boxes_num backward : roi_align_grad - api : roi_pool args : (Tensor x, Tensor boxes, Tensor boxes_num, int pooled_height, int pooled_width, float spatial_scale) output : Tensor(out), Tensor(arg_max) infer_meta : func : RoiPoolInferMeta kernel : func : roi_pool data_type : x optional : boxes_num intermediate : arg_max backward : roi_pool_grad - api : roll args : (Tensor x, IntArray shifts, int64_t[] axis) output : Tensor(out) infer_meta : func : RollInferMeta kernel : func : roll backward : roll_grad - api : round args : (Tensor x) output : Tensor(out) infer_meta : func : UnchangedInferMeta kernel : func : round backward : round_grad - api : rsqrt args : (Tensor x) output : Tensor(out) infer_meta : func : UnchangedInferMeta kernel : func : rsqrt inplace : (x -> out) backward : rsqrt_grad - api : scale args : (Tensor x, Scalar scale, float bias, bool bias_after_scale) output : Tensor(out) infer_meta : func : UnchangedInferMeta param : [x] kernel : func : scale {dense -> dense}, scale_sr {selected_rows -> selected_rows} inplace : (x -> out) backward : scale_grad - api : scatter args : (Tensor x, Tensor index, Tensor updates, bool overwrite) output : Tensor infer_meta : func : ScatterInferMeta dtype : x kernel : func : scatter backward : scatter_grad - api : scatter_nd_add args : (Tensor x, Tensor index, Tensor updates) output : Tensor infer_meta : func : ScatterNdAddInferMeta dtype : x kernel : func : scatter_nd_add backward : scatter_nd_add_grad - api : searchsorted args : (Tensor sorted_sequence, Tensor value, bool out_int32, bool right) output : Tensor(out) infer_meta : func : SearchsortedInferMeta kernel : func : searchsorted data_type : sorted_sequence # segment_pool - api : segment_pool args : (Tensor x, Tensor segment_ids, str pooltype) output : Tensor(out), Tensor(summed_ids) infer_meta : func : SegmentPoolInferMeta kernel : func : segment_pool data_type : x backward : segment_pool_grad # selu - api : selu args : (Tensor x, float scale, float alpha) output : Tensor infer_meta : func : UnchangedInferMeta param : [x] kernel : func : selu backward : selu_grad - api : sgd_ args : (Tensor param, Tensor learning_rate, Tensor grad, Tensor master_param, bool multi_precision) output : Tensor(param_out), Tensor(master_param_out) infer_meta : func : SgdInferMeta kernel : func : sgd {dense, dense, dense, dense -> dense, dense}, sgd_dense_param_sparse_grad {dense, dense, selected_rows, dense -> dense, dense}, sgd_sparse_param_sparse_grad {selected_rows, dense, selected_rows, selected_rows -> selected_rows, selected_rows} data_type : param data_transform : support_trans_dtype : learning_rate optional : master_param inplace : (param -> param_out), (master_param -> master_param_out) - api : shape args : (Tensor input) output : Tensor infer_meta : func : ShapeInferMeta kernel : func : shape {dense -> dense}, shape_sr {selected_rows -> selected_rows} data_transform: skip_transform : input # shard_index - api : shard_index args : (Tensor in, int index_num, int nshards, int shard_id, int ignore_value) output : Tensor infer_meta : func : ShardIndexInferMeta kernel : func : shard_index # sigmoid - api : sigmoid args : (Tensor x) output : Tensor infer_meta : func : UnchangedInferMeta kernel : func : sigmoid backward : sigmoid_grad # sigmoid_cross_entropy_with_logits - api : sigmoid_cross_entropy_with_logits args : (Tensor x, Tensor label, bool normalize, int ignore_index) output : Tensor infer_meta : func : SigmoidCrossEntropyWithLogitsInferMeta kernel : func : sigmoid_cross_entropy_with_logits backward : sigmoid_cross_entropy_with_logits_grad - api : sign args : (Tensor x) output : Tensor infer_meta : func : UnchangedInferMeta kernel : func : sign # silu - api : silu args : (Tensor x) output : Tensor infer_meta : func : UnchangedInferMeta kernel : func : silu backward : silu_grad # sin - api : sin args : (Tensor x) output : Tensor infer_meta : func : UnchangedInferMeta kernel : func : sin backward : sin_grad # sinh - api : sinh args : (Tensor x) output : Tensor infer_meta : func : UnchangedInferMeta kernel : func : sinh backward : sinh_grad # size - api : size args : (Tensor x) output : Tensor infer_meta : func : SizeInferMeta kernel : func : size data_transform: skip_transform : x - api : slice args : (Tensor input, int64_t[] axes, IntArray starts, IntArray ends, int64_t[] infer_flags, int64_t[] decrease_axis) output : Tensor infer_meta : func : SliceRawInferMeta kernel : func : slice backward : slice_grad - api : slogdet args : (Tensor x) output : Tensor infer_meta : func : UnchangedInferMeta kernel : func : slogdeterminant backward : slogdet_grad # soft_shrink - api : soft_shrink args : (Tensor x, float lambda) output : Tensor infer_meta : func : UnchangedInferMeta param : [x] kernel : func : soft_shrink backward : soft_shrink_grad - api : softmax args : (Tensor x, int axis) output : Tensor infer_meta : func : SoftmaxInferMeta kernel : func : softmax use_gpudnn : true backward : softmax_grad - api : softplus args : (Tensor x, float beta, float threshold) output : Tensor infer_meta : func : UnchangedInferMeta param : [x] kernel : func : softplus backward : softplus_grad # softsign - api : softsign args : (Tensor x) output : Tensor infer_meta : func : UnchangedInferMeta param : [x] kernel : func : softsign backward : softsign_grad - api : spectral_norm args : (Tensor weight, Tensor u, Tensor v, int dim, int power_iters, float eps) output : Tensor infer_meta : func : SpectralNormInferMeta kernel : func : spectralnorm data_type : weight backward : spectral_norm_grad - api : split args : (Tensor x, IntArray num_or_sections, Scalar(int) axis) output : Tensor[] invoke : split_impl(x, num_or_sections, axis) backward : split_grad - api : sqrt args : (Tensor x) output : Tensor infer_meta : func : UnchangedInferMeta kernel : func : sqrt backward : sqrt_grad - api : square args : (Tensor x) output : Tensor infer_meta : func : UnchangedInferMeta kernel : func : square backward : square_grad - api : squared_l2_norm args : (Tensor x) output : Tensor infer_meta : func : SquaredL2NormInferMeta kernel : func : squared_l2_norm backward : squared_l2_norm_grad - api : squeeze args : (Tensor x, int[] axes) output : Tensor(out), Tensor(xshape) infer_meta : func : SqueezeWithXShapeInferMeta kernel : func : squeeze_with_xshape view: (x -> out) intermediate : xshape backward : squeeze_grad - api : stack args : (Tensor[] x, int axis) output : Tensor infer_meta : func : StackInferMeta kernel : func : stack backward : stack_grad - api : strided_slice args : (Tensor x, int[] axes, IntArray starts, IntArray ends, IntArray strides) output : Tensor infer_meta : func : StridedSliceInferMeta kernel : func : strided_slice backward : strided_slice_grad - api : subtract args : (Tensor x, Tensor y) output : Tensor infer_meta : func : ElementwiseInferMeta kernel : func : subtract backward : subtract_grad - api : sum args : (Tensor x, int64_t[] dims={}, DataType out_dtype=DataType::UNDEFINED, bool keep_dim=false) output : Tensor(out) infer_meta : func : SumInferMeta kernel : func : sum data_type : x backward : sum_grad - api : svd args : (Tensor x, bool full_metrices) output : Tensor(u), Tensor(s), Tensor(vh) infer_meta : func : SvdInferMeta kernel : func : svd backward : svd_grad # The python API paddle.nn.functional.swish has no `bete` argument, it may be removed later - api : swish args : (Tensor x, float beta=1.0) output : Tensor(out) infer_meta : func : UnchangedInferMeta param : [x] kernel : func : swish backward : swish_grad # sync_batch_norm - api : sync_batch_norm args : (Tensor x, Tensor scale, Tensor bias, Tensor mean, Tensor variance, float momentum, float epsilon, str data_layout, bool is_test, bool use_global_stats, bool trainable_statistics, bool fuse_with_relu) output : Tensor(out), Tensor(mean_out), Tensor(variance_out), Tensor(saved_mean), Tensor(saved_variance), Tensor(reserve_space) infer_meta : func : BatchNormInferMeta kernel : func : sync_batch_norm backward : sync_batch_norm_grad # take_along_axis - api : take_along_axis args : (Tensor x, Tensor index, int axis) output : Tensor infer_meta : func : UnchangedInferMeta param : [index] kernel : func : take_along_axis data_type : x backward : take_along_axis_grad # tan - api : tan args : (Tensor x) output : Tensor infer_meta : func : UnchangedInferMeta kernel : func : tan backward : tan_grad # tanh - api : tanh args : (Tensor x) output : Tensor infer_meta : func : UnchangedInferMeta kernel : func : tanh backward : tanh_grad # tanh_shrink - api : tanh_shrink args : (Tensor x) output : Tensor infer_meta : func : UnchangedInferMeta kernel : func : tanh_shrink backward : tanh_shrink_grad # temporal_shift - api : temporal_shift args : (Tensor x, int seg_num, float shift_ratio, str data_format_str) output : Tensor infer_meta : func : TemporalShiftInferMeta kernel : func : temporal_shift backward : temporal_shift_grad # thresholded_relu - api : thresholded_relu args : (Tensor x, float threshold) output : Tensor infer_meta : func : UnchangedInferMeta param : [x] kernel : func : thresholded_relu backward : thresholded_relu_grad # tile - api : tile args : (Tensor x, IntArray repeat_times) output : Tensor infer_meta : func : TileInferMeta kernel : func : tile backward : tile_grad - api : top_k args : (Tensor x, Scalar k, int axis = -1, bool largest = true, bool sorted = true) output : Tensor(out), Tensor(indices) infer_meta : func : TopKInferMeta kernel : func : top_k backward : top_k_grad - api : transpose args : (Tensor x, int[] axis) output : Tensor infer_meta : func : TransposeInferMeta kernel : func : transpose backward : transpose_grad - api : triangular_solve args : (Tensor x, Tensor y, bool upper, bool transpose, bool unitriangular) output : Tensor infer_meta : func : TriangularSolveInferMeta kernel : func : triangular_solve backward : triangular_solve_grad - api : tril_indices args : (int rows, int cols, int offset, DataType dtype, Place place={}) output : Tensor(out) infer_meta : func : TrilIndicesInferMeta param : [rows, cols, offset, dtype] kernel : func : tril_indices param : [rows, cols, offset, dtype] data_type : dtype backend : place - api : tril_triu args : (Tensor x, int diagonal, bool lower) output : Tensor(out) infer_meta : func : TrilTriuInferMeta kernel : func : tril_triu backward : tril_triu_grad # python API: paddle.nn.initializer.TruncatedNormal - api : truncated_gaussian_random args : (int[] shape, float mean, float std, int seed, DataType dtype=DataType::FLOAT32, Place place={}) output : Tensor infer_meta : func : TruncatedGaussianRandomInferMeta param : [shape, mean, std, seed, dtype] kernel : func : truncated_gaussian_random param : [shape, mean, std, seed, dtype] backend : place data_type : dtype - api : unbind args : (Tensor input, int axis) output : Tensor[] {axis<0 ? input.dims()[input.dims().size()+axis]:input.dims()[axis]} infer_meta : func : UnbindInferMeta kernel : func : unbind backward : unbind_grad # unfold - api : unfold args : (Tensor x, int[] kernel_sizes, int[] strides, int[] paddings, int[] dilations) output : Tensor infer_meta : func : UnfoldInferMeta kernel : func : unfold backward : unfold_grad - api : uniform_random args : (IntArray shape, DataType dtype, float min, float max, int seed, Place place={}) output : Tensor(out) infer_meta : func : UniformRandomInferMeta param: [shape, dtype, min, max, seed] kernel : func : uniform_random param: [shape, dtype, min, max, seed] data_type : dtype backend : place # The `axis` argument of Python API paddle.unique is not vector - api : unique args : (Tensor x, bool return_index, bool return_inverse, bool return_counts, int[] axis, DataType dtype=DataType::INT64) output : Tensor(out), Tensor(indices), Tensor(inverse), Tensor(counts) infer_meta : func : UniqueInferMeta kernel : func : unique data_type : x - api : unique_consecutive args : (Tensor x, bool return_inverse, bool return_counts, int[] axis, int dtype) output : Tensor(out), Tensor(index), Tensor(counts) infer_meta : func : UniqueConsecutiveInferMeta kernel : func : unique_consecutive data_type : x - api : unsqueeze args : (Tensor x, IntArray axis) output : Tensor(out), Tensor(xshape) infer_meta : func : UnsqueezeWithXShapeInferMeta kernel : func : unsqueeze_with_xshape view: (x -> out) intermediate : xshape backward : unsqueeze_grad # unstack - api : unstack args : (Tensor x, int axis, int num) output : Tensor[]{num} infer_meta : func : UnStackInferMeta kernel : func : unstack backward : unstack_grad # viterbi_decode - api : viterbi_decode args : (Tensor input, Tensor transition, Tensor length, bool include_bos_eos_tag) output : Tensor(scores), Tensor(path) infer_meta : func : ViterbiDecodeInferMeta kernel : func : viterbi_decode data_type : input - api : warpctc args : (Tensor logits, Tensor label, Tensor logits_length, Tensor labels_length, int blank, bool norm_by_times) output : Tensor(loss), Tensor(warpctcgrad) infer_meta : func : WarpctcInferMeta kernel : func : warpctc data_type: logits optional: logits_length, labels_length intermediate: warpctcgrad backward : warpctc_grad - api : where args : (Tensor condition, Tensor x, Tensor y) output : Tensor infer_meta : func : WhereInferMeta kernel : func : where backward : where_grad # where_index - api : where_index args : (Tensor condition) output : Tensor infer_meta : func : WhereIndexInferMeta kernel : func : where_index # yolo_box - api : yolo_box args : (Tensor x, Tensor img_size, int[] anchors, int class_num, float conf_thresh, int downsample_ratio, bool clip_bbox, float scale_x_y=1.0, bool iou_aware=false, float iou_aware_factor=0.5) output : Tensor(boxes), Tensor(scores) infer_meta : func : YoloBoxInferMeta kernel : func : yolo_box data_type : x # yolov3_loss - api : yolov3_loss args : (Tensor x, Tensor gt_box, Tensor gt_label, Tensor gt_score, int[] anchors, int[] anchor_mask, int class_num, float ignore_thresh, int downsample_ratio, bool use_label_smooth=true, float scale_x_y=1.0) output : Tensor(loss), Tensor(objectness_mask), Tensor(gt_match_mask) infer_meta : func : Yolov3LossInferMeta kernel : func : yolov3_loss data_type : x optional : gt_score backward : yolov3_loss_grad - api : zeros_like args : (Tensor x, DataType dtype=DataType::UNDEFINED, Place place = {}) output : Tensor invoke : full_like(x, 0, dtype, place) - api: broadcast_tensors args: (Tensor[] x) output: Tensor[]{x.size()} infer_meta: func: BroadcastTensorsInferMeta kernel: func: broadcast_tensors backward: broadcast_tensors_grad # dirichlet - api: dirichlet args: (Tensor alpha) output: Tensor infer_meta: func: DirichletInferMeta kernel: func: dirichlet # eig - api: eig args: (Tensor x) output: Tensor(out_w), Tensor(out_v) infer_meta: func: EigInferMeta kernel: func: eig backward: eig_grad # overlap_add - api: overlap_add args: (Tensor x, int hop_length, int axis) output: Tensor infer_meta: func: OverlapAddInferMeta kernel: func: overlap_add backward: overlap_add_grad - api: uniform_random_inplace args: (Tensor x, float min, float max, int seed, int diag_num, int diag_step, float diag_val) output: Tensor(out) infer_meta: func: UniformRandomInplaceInferMeta kernel: func: uniform_random_inplace data_type: x inplace: (x -> out) backward: uniform_random_inplace_grad