# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from __future__ import print_function from ..wrapped_decorator import signature_safe_contextmanager from .layer_function_generator import autodoc, templatedoc from .tensor import assign, cast, fill_constant from .. import core from ..framework import Program, Variable, Operator from ..layer_helper import LayerHelper, unique_name from .nn import logical_and, logical_not, logical_or from .utils import assert_same_structure, map_structure import numpy import warnings import six from functools import reduce, partial from ..data_feeder import convert_dtype, check_type_and_dtype from ... import compat as cpt from ..backward import _infer_var_data_type_shape_ __all__ = [ 'While', 'Switch', 'increment', 'array_write', 'create_array', 'less_than', 'less_equal', 'greater_than', 'greater_equal', 'equal', 'not_equal', 'array_read', 'array_length', 'cond', 'IfElse', 'DynamicRNN', 'StaticRNN', 'reorder_lod_tensor_by_rank', 'Print', 'is_empty', 'case', 'switch_case', 'while_loop' ] def select_output(input, outputs, mask): """ **select_output** This API takes in one input and multiple outputs and an integer mask. It selects the output specified by the mask and copy the input to selected output. It is useful in control flow. Args: input(Variable): The input variable outputs(tuple|list): The output variables mask(Variable): A tensor containing 1 integer number selecting which output to be copied with input Returns: Variable: The outputs variables """ helper = LayerHelper('select_output', **locals()) helper.append_op( type='select_output', inputs={'X': input, 'Mask': mask}, outputs={'Out': outputs}) return outputs def select_input(inputs, mask): """ **select_input** This API takes in multiple inputs and uses an integer mask to select one input to output. It is useful in control flow. Args: inputs(tuple|list): The input variables mask(Variable): A tensor containing 1 integer number selecting which input to output Returns: Variable: The selected input variable """ helper = LayerHelper('select_input', **locals()) if isinstance(inputs, list) or isinstance(inputs, tuple): input_dtype = inputs[0].dtype input_shape = inputs[0].shape else: input_dtype = inputs.dtype input_shape = inputs.shape out = helper.create_variable(dtype=input_dtype, shape=input_shape) helper.append_op( type='select_input', inputs={'X': inputs, 'Mask': mask}, outputs={'Out': out}) return out def split_lod_tensor(input, mask, level=0): """ This function takes in an input that contains the complete lod information, and takes in a mask which is used to mask certain parts of the input. The output is the true branch and the false branch with the mask applied to the input at a certain level in the tensor. Mainly used in IfElse to split data into two parts. Args: input(tuple|list|None): The input tensor that contains complete lod information needed to construct the output. mask(list): A bool column vector which masks the input. level(int): The specific lod level to split. Returns: tuple(Variable, Variable): The true branch of tensor as per the mask applied to input. The false branch of tensor as per the mask applied to input. Examples: .. code-block:: python import paddle.fluid as fluid x = fluid.layers.data(name='x', shape=[1]) x.persistable = True y = fluid.layers.data(name='y', shape=[1]) y.persistable = True out_true, out_false = fluid.layers.split_lod_tensor( input=x, mask=y, level=level) """ helper = LayerHelper('split_lod_tensor', **locals()) out_true = helper.create_variable_for_type_inference(dtype=input.dtype) out_false = helper.create_variable_for_type_inference(dtype=input.dtype) helper.append_op( type='split_lod_tensor', inputs={ 'X': input, 'Mask': mask, }, outputs={'OutTrue': out_true, 'OutFalse': out_false}, attrs={'level': level}) return out_true, out_false def merge_lod_tensor(in_true, in_false, x, mask, level=0): """ **merge_lod_tensor** This function takes in an input :math:`x`, the True branch, the False branch and a binary :math:`mask`. Using this information, this function merges the True and False branches of the tensor into a single tensor as output at a certain lod level indicated by :math:`level`. Used in IfElse to merge the output if True block and False Block. Args: in_true(tuple|list|None): The True branch to be merged. in_false(tuple|list|None): The False branch to be merged. x(tuple|list|None): The input tensor that contains complete lod information needed to construct the output. mask(list): A bool column vector which masks the input. level(int): The specific lod level to merge. Returns: Variable: The merged output tensor. Examples: .. code-block:: python import paddle.fluid as fluid x = layers.data( name='x', shape=[1], dtype='float32', stop_gradient=False) y = layers.data( name='y', shape=[1], dtype='bool', stop_gradient=False) level = 0 out_true, out_false = layers.split_lod_tensor( input=x, mask=y, level=level) out = layers.merge_lod_tensor( in_true=out_true, in_false=out_false, mask=y, x=x, level=level) """ helper = LayerHelper('merge_lod_tensor', **locals()) out = helper.create_variable_for_type_inference(dtype=in_true.dtype) helper.append_op( type='merge_lod_tensor', inputs={'X': x, 'Mask': mask, 'InTrue': in_true, 'InFalse': in_false}, outputs={'Out': out}, attrs={'level': level}) return out def Print(input, first_n=-1, message=None, summarize=20, print_tensor_name=True, print_tensor_type=True, print_tensor_shape=True, print_tensor_lod=True, print_phase='both'): ''' **Print operator** This creates a print op that will print when a tensor is accessed. Wraps the tensor passed in so that whenever that a tensor is accessed, the message `message` is printed, along with the current value of the tensor `t`. Args: input (Variable): A Tensor to print. summarize (int): Number of elements in the tensor to be print. If it's vaule is -1, then all elements in the tensor will be print. message (str): A string message to print as a prefix. first_n (int): Only log `first_n` number of times. print_tensor_name (bool, optional): Print the tensor name. Default: True. print_tensor_type (bool, optional): Print the tensor type. Defaultt: True. print_tensor_shape (bool, optional): Print the tensor shape. Default: True. print_tensor_lod (bool, optional): Print the tensor lod. Default: True. print_phase (str): Which phase to displace, including 'forward', 'backward' and 'both'. Default: 'both'. If set to 'backward', will only print the gradients of input tensor; If set to 'both', will both print the input tensor itself and the gradients of input tensor. Returns: Variable: Output tensor. NOTES: The input and output are two different variables, and in the following process, you should use the output variable but not the input, otherwise, the print layer doesn't have backward. Examples: .. code-block:: python import paddle.fluid as fluid input = fluid.layers.fill_constant(shape=[10,2], value=3, dtype='int64') input = fluid.layers.Print(input, message="The content of input layer:") main_program = fluid.default_main_program() exe = fluid.Executor(fluid.CPUPlace()) exe.run(main_program) Output at runtime: .. code-block:: bash The content of input layer: The place is:CPUPlace Tensor[fill_constant_0.tmp_0] shape: [10,2,] dtype: x data: 3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3, ''' check_type_and_dtype(input, 'input', Variable, ['float32', 'float64', 'int32', 'int64', 'bool'], 'fluid.layers.Print') helper = LayerHelper('print' + "_" + input.name, **locals()) output = helper.create_variable_for_type_inference(input.dtype) helper.append_op( type='print', inputs={'In': input}, outputs={'Out': output}, attrs={ 'first_n': first_n, 'summarize': summarize, 'message': message or "", 'print_tensor_name': print_tensor_name, 'print_tensor_type': print_tensor_type, 'print_tensor_shape': print_tensor_shape, 'print_tensor_lod': print_tensor_lod, 'print_phase': print_phase.upper() }) return output class BlockGuard(object): """ BlockGuard class. BlockGuard class is used to create a sub-block in a program by using the Python `with` keyword. """ def __init__(self, main_program): if not isinstance(main_program, Program): raise TypeError("BlockGuard takes a program") self.main_program = main_program def __enter__(self): self.main_program._create_block() def __exit__(self, exc_type, exc_val, exc_tb): self.main_program._rollback() if exc_type is not None: return False # re-raise exception return True class BlockGuardWithCompletion(BlockGuard): """ BlockGuardWithCompletion class. BlockGuardWithCompletion class is used to create an op with a block in a program. """ def __init__(self, rnn): if not isinstance(rnn, StaticRNN): raise TypeError("BlockGuardWithCompletion takes a StaticRNN") super(BlockGuardWithCompletion, self).__init__(rnn.helper.main_program) self.rnn = rnn def __enter__(self): self.rnn.status = StaticRNN.IN_RNN_BLOCK return super(BlockGuardWithCompletion, self).__enter__() def __exit__(self, exc_type, exc_val, exc_tb): if exc_type is not None: return False self.rnn.status = StaticRNN.AFTER_RNN_BLOCK self.rnn._complete_op() return super(BlockGuardWithCompletion, self).__exit__(exc_type, exc_val, exc_tb) class StaticRNNMemoryLink(object): """ StaticRNNMemoryLink class. StaticRNNMemoryLink class is used to create a link between two memory cells of a StaticRNN. NOTE: This is a internal data structure of a very low-level API. Please use StaticRNN instead. Args: init(Variable): the initial variable for Memory. pre_mem(Variable): the memory variable in previous time step. mem(Variable): the memory variable in current time step. """ def __init__(self, init, pre_mem, mem=None): self.init = init self.pre_mem = pre_mem self.mem = mem class StaticRNN(object): """ StaticRNN class. The StaticRNN can process a batch of sequence data. The first dimension of inputs represents sequence length, the length of each input sequence must be equal. StaticRNN will unfold sequence into time steps, user needs to define how to process each time step during the :code:`with` step. Args: name (str, optional): Please refer to :ref:`api_guide_Name`, Default None. Examples: .. code-block:: python import paddle.fluid as fluid import paddle.fluid.layers as layers vocab_size, hidden_size=10000, 200 x = fluid.data(name="x", shape=[None, 1, 1], dtype='int64') # create word sequence x_emb = layers.embedding( input=x, size=[vocab_size, hidden_size], dtype='float32', is_sparse=False) # transform batch size to dim 1 x_emb = layers.transpose(x_emb, perm=[1, 0, 2]) rnn = fluid.layers.StaticRNN() with rnn.step(): # mark created x_emb as input, each step process a word word = rnn.step_input(x_emb) # create prev memory parameter, batch size comes from word prev = rnn.memory(shape=[-1, hidden_size], batch_ref = word) hidden = fluid.layers.fc(input=[word, prev], size=hidden_size, act='relu') # use hidden to update prev rnn.update_memory(prev, hidden) # mark hidden as output rnn.step_output(hidden) # get StaticrNN final output result = rnn() """ BEFORE_RNN_BLOCK = 0 IN_RNN_BLOCK = 1 AFTER_RNN_BLOCK = 2 def __init__(self, name=None): self.helper = LayerHelper("static_rnn", name=name) self.memories = {} # memory map, from pre_mem.name --> MemoryLink self.inputs = [] # input variable list in current block self.outputs = [] # output variable list in parent block self.status = StaticRNN.BEFORE_RNN_BLOCK # status flag. # sequence length, since it is a static RNN, sequence length are fixed. self.seq_len = None def step(self): """ Define operators in each step. step is used in :code:`with` block, OP in :code:`with` block will be executed sequence_len times (sequence_len is the length of input) """ return BlockGuardWithCompletion(self) def _assert_in_rnn_block_(self, method): if self.status != StaticRNN.IN_RNN_BLOCK: raise ValueError("You must invoke {0} in rnn block".format(method)) def memory(self, init=None, shape=None, batch_ref=None, init_value=0.0, init_batch_dim_idx=0, ref_batch_dim_idx=1): """ Create a memory variable for static rnn. If the :code:`init` is not None, :code:`memory` will be initialized by this Variable. If the :code:`init` is None, :code:`shape` and :code:`batch_ref` must be set, and this function will create a new variable with shape and batch_ref to initialize :code:`init` Variable. Args: init(Variable, optional): Tensor used to init memory. If it is not set, :code:`shape` and :code:`batch_ref` must be provided. Default: None. shape(list|tuple): When :code:`init` is None use this arg to initialize memory shape. NOTE the shape does not contain batch_size. Default: None. batch_ref(Variable, optional): When :code:`init` is None, memory's batch size will be set as batch_ref's ref_batch_dim_idx value. Default: None. init_value(float, optional): When :code:`init` is None, used to init memory's value. Default: 0.0. init_batch_dim_idx(int, optional): the batch_size axis of the :code:`init` Variable. Default: 0. ref_batch_dim_idx(int, optional): the batch_size axis of the :code:`batch_ref` Variable. Default: 1. Returns: Variable: The memory variable. Examples 1: .. code-block:: python import paddle.fluid as fluid import paddle.fluid.layers as layers vocab_size, hidden_size=10000, 200 x = fluid.data(name="x", shape=[None, 1, 1], dtype='int64') # create word sequence x_emb = layers.embedding( input=x, size=[vocab_size, hidden_size], dtype='float32', is_sparse=False) # transform batch size to dim 1 x_emb = layers.transpose(x_emb, perm=[1, 0, 2]) rnn = fluid.layers.StaticRNN() with rnn.step(): # mark created x_emb as input, each step process a word word = rnn.step_input(x_emb) # create prev memory parameter, batch size comes from word prev = rnn.memory(shape=[-1, hidden_size], batch_ref = word) hidden = fluid.layers.fc(input=[word, prev], size=hidden_size, act='relu') # use hidden to update prev rnn.update_memory(prev, hidden) Examples 2: .. code-block:: python import paddle.fluid as fluid import paddle.fluid.layers as layers vocab_size, hidden_size=10000, 200 x = fluid.data(name="x", shape=[None, 1, 1], dtype='int64') # create word sequence x_emb = layers.embedding( input=x, size=[vocab_size, hidden_size], dtype='float32', is_sparse=False) # transform batch size to dim 1 x_emb = layers.transpose(x_emb, perm=[1, 0, 2]) boot_memory = fluid.layers.data(name='boot', shape=[hidden_size], dtype='float32', lod_level=1) rnn = fluid.layers.StaticRNN() with rnn.step(): # mark created x_emb as input, each step process a word word = rnn.step_input(x_emb) # init memory prev = rnn.memory(init=boot_memory) hidden = fluid.layers.fc(input=[word, prev], size=hidden_size, act='relu') # update hidden with prev rnn.update_memory(prev, hidden) """ self._assert_in_rnn_block_('memory') if init is None: if shape is None or batch_ref is None: raise ValueError( "if init is None, memory at least need shape and batch_ref") parent_block = self._parent_block() var_name = unique_name.generate_with_ignorable_key("@".join( [self.helper.name, "memory_boot"])) boot_var = parent_block.create_var( name=var_name, shape=shape, dtype=batch_ref.dtype, persistable=False) parent_block.append_op( type="fill_constant_batch_size_like", inputs={'Input': [batch_ref]}, outputs={'Out': [boot_var]}, attrs={ 'value': init_value, 'shape': boot_var.shape, 'dtype': boot_var.dtype, 'input_dim_idx': ref_batch_dim_idx, 'output_dim_idx': init_batch_dim_idx }) return self.memory(init=boot_var) else: pre_mem = self.helper.create_variable( name=unique_name.generate_with_ignorable_key("@".join( [self.helper.name, "mem"])), dtype=init.dtype, shape=init.shape) self.memories[pre_mem.name] = StaticRNNMemoryLink( init=init, pre_mem=pre_mem) return pre_mem def step_input(self, x): """ Mark a sequence as a StaticRNN input. Args: x(Variable): The input sequence, the shape of x should be [seq_len, ...]. Returns: Variable: The current time step data in the input sequence. Examples: .. code-block:: python import paddle.fluid as fluid import paddle.fluid.layers as layers vocab_size, hidden_size=10000, 200 x = fluid.data(name="x", shape=[None, 1, 1], dtype='int64') # create word sequence x_emb = layers.embedding( input=x, size=[vocab_size, hidden_size], dtype='float32', is_sparse=False) # transform batch size to dim 1 x_emb = layers.transpose(x_emb, perm=[1, 0, 2]) rnn = fluid.layers.StaticRNN() with rnn.step(): # mark created x_emb as input, each step process a word word = rnn.step_input(x_emb) # create prev memory parameter, batch size comes from word prev = rnn.memory(shape=[-1, hidden_size], batch_ref = word) hidden = fluid.layers.fc(input=[word, prev], size=hidden_size, act='relu') # use hidden to update prev rnn.update_memory(prev, hidden) """ self._assert_in_rnn_block_('step_input') if not isinstance(x, Variable): raise TypeError("step input takes a Variable") if self.seq_len is None: self.seq_len = x.shape[0] elif x.shape[0] != -1 and self.seq_len != x.shape[0]: raise ValueError("Static RNN only take fix seq_len input") ipt = self.helper.create_variable( name=x.name, dtype=x.dtype, shape=list(x.shape[1:]), type=x.type) self.inputs.append(ipt) return ipt def step_output(self, o): """ Mark a sequence as a StaticRNN output. Args: o(Variable): The output sequence. Returns: None. Examples: .. code-block:: python import paddle.fluid as fluid import paddle.fluid.layers as layers vocab_size, hidden_size=10000, 200 x = fluid.data(name="x", shape=[None, 1, 1], dtype='int64') # create word sequence x_emb = layers.embedding( input=x, size=[vocab_size, hidden_size], dtype='float32', is_sparse=False) # transform batch size to dim 1 x_emb = layers.transpose(x_emb, perm=[1, 0, 2]) rnn = fluid.layers.StaticRNN() with rnn.step(): # mark created x_emb as input, each step process a word word = rnn.step_input(x_emb) # create prev memory parameter, batch size comes from word prev = rnn.memory(shape=[-1, hidden_size], batch_ref = word) hidden = fluid.layers.fc(input=[word, prev], size=hidden_size, act='relu') # use hidden to update prev rnn.update_memory(prev, hidden) rnn.step_output(hidden) result = rnn() """ self._assert_in_rnn_block_('step_output') if not isinstance(o, Variable): raise TypeError("step output takes a Variable") tmp_o = self.helper.create_variable_for_type_inference(dtype=o.dtype) self.helper.append_op( type='rnn_memory_helper', inputs={'X': [o]}, outputs={'Out': tmp_o}, attrs={'dtype': o.dtype}) out_var = self._parent_block().create_var( name=tmp_o.name, shape=[self.seq_len] + list(tmp_o.shape), dtype=tmp_o.dtype) self.outputs.append(out_var) def output(self, *outputs): """ Mark the StaticRNN output variables. Args: outputs: The output Tensor, can mark multiple variables as output Returns: None Examples: .. code-block:: python import paddle.fluid as fluid import paddle.fluid.layers as layers vocab_size, hidden_size=10000, 200 x = fluid.data(name="x", shape=[None, 1, 1], dtype='int64') # create word sequence x_emb = layers.embedding( input=x, size=[vocab_size, hidden_size], dtype='float32', is_sparse=False) # transform batch size to dim 1 x_emb = layers.transpose(x_emb, perm=[1, 0, 2]) rnn = fluid.layers.StaticRNN() with rnn.step(): # mark created x_emb as input, each step process a word word = rnn.step_input(x_emb) # create prev memory parameter, batch size comes from word prev = rnn.memory(shape=[-1, hidden_size], batch_ref = word) hidden = fluid.layers.fc(input=[word, prev], size=hidden_size, act='relu') # use hidden to update prev rnn.update_memory(prev, hidden) # mark each step's hidden and word as output rnn.output(hidden, word) result = rnn() """ for each in outputs: self.step_output(each) def update_memory(self, mem, var): """ Update the memory from :code:`mem` to :code:`var`. Args: mem(Variable): the memory variable. var(Variable): the plain variable generated in RNN block, used to update memory. var and mem should hava same dims and data type. Returns: None """ if not isinstance(mem, Variable) or not isinstance(var, Variable): raise TypeError("update memory should take variables") self.memories[mem.name].mem = var def _parent_block(self): prog = self.helper.main_program parent_idx = prog.current_block().parent_idx assert parent_idx >= 0 parent_block = prog.block(parent_idx) return parent_block def __call__(self, *args, **kwargs): if self.status != StaticRNN.AFTER_RNN_BLOCK: raise ValueError("RNN output can only be retrieved after rnn block") if len(self.outputs) == 0: raise ValueError("RNN has no output") elif len(self.outputs) == 1: return self.outputs[0] else: return self.outputs def _complete_op(self): main_program = self.helper.main_program rnn_block = main_program.current_block() parent_block = self._parent_block() local_inputs = set() for op in rnn_block.ops: assert isinstance(op, Operator) for oname in op.output_names: for out_var_name in op.output(oname): local_inputs.add(out_var_name) for var in self.inputs: local_inputs.add(var.name) for m in self.memories: local_inputs.add(m) # NOTE(zcd): the params have two categories of variables. # - the variables that are the out of StaticRnn. # - the variables that are the parameters of some layers, for example, conv2d. params = list() for op in rnn_block.ops: assert isinstance(op, Operator) for iname in op.input_names: for in_var_name in op.input(iname): if in_var_name not in local_inputs: params.append(in_var_name) parameters = [parent_block.var(name) for name in set(params)] step_scope = parent_block.create_var( type=core.VarDesc.VarType.STEP_SCOPES) inlinks = [parent_block.var(i.name) for i in self.inputs] outlinks = self.outputs # NOTE(zcd): the states maybe empty in some case. boot_memories = [] pre_memories = [] memories = [] for _, mem in six.iteritems(self.memories): boot_memories.append(mem.init) pre_memories.append(mem.pre_mem.name) assert mem.mem is not None, "%s should be updated in every step." % ( mem.init.name) mem_var = rnn_block.var(mem.mem.name) assert isinstance(mem_var, Variable) new_mem = self.helper.create_variable_for_type_inference( dtype=mem_var.dtype) rnn_block.append_op( type='rnn_memory_helper', inputs={'X': [mem_var]}, outputs={'Out': [new_mem]}, attrs={'dtype': mem_var.dtype}) memories.append(new_mem.name) parent_block.append_op( type='recurrent', inputs={ 'inputs': inlinks, 'initial_states': boot_memories, 'parameters': parameters }, outputs={'outputs': outlinks, 'step_scopes': [step_scope]}, attrs={ 'has_states': len(pre_memories) > 0, 'ex_states': pre_memories, 'states': memories, 'sub_block': rnn_block }) class WhileGuard(BlockGuard): def __init__(self, while_op): if not isinstance(while_op, While): raise TypeError("WhileGuard takes a while op") super(WhileGuard, self).__init__(while_op.helper.main_program) self.while_op = while_op def __enter__(self): self.while_op.status = While.IN_WHILE_BLOCK return super(WhileGuard, self).__enter__() def __exit__(self, exc_type, exc_val, exc_tb): if exc_type is not None: return False self.while_op.status = While.AFTER_WHILE_BLOCK self.while_op._complete() return super(WhileGuard, self).__exit__(exc_type, exc_val, exc_tb) class While(object): """ while loop control flow. Repeat while body until cond is False. Note: A new OP :ref:`api_fluid_layers_while_loop` is highly recommended instead of ``While`` if the shape of parameter ``cond`` is [1]. OP :ref:`api_fluid_layers_while_loop` is easier to use and is called with less code but does the same thing as ``While`` . Args: cond(Variable): A Tensor whose data type is bool controlling whether to continue looping. is_test(bool, optional): A flag indicating whether execution is in test phase. Default value is False. name(str, optional): The default value is None. Normally there is no need for user to set this property. For more information, please refer to :ref:`api_guide_Name` . Examples: .. code-block:: python import paddle.fluid as fluid import numpy as np i = fluid.layers.fill_constant(shape=[1], dtype='int64', value=0) # loop counter loop_len = fluid.layers.fill_constant(shape=[1],dtype='int64', value=10) # loop length cond = fluid.layers.less_than(x=i, y=loop_len) while_op = fluid.layers.While(cond=cond) with while_op.block(): i = fluid.layers.increment(x=i, value=1, in_place=True) fluid.layers.less_than(x=i, y=loop_len, cond=cond) exe = fluid.Executor(fluid.CPUPlace()) exe.run(fluid.default_startup_program()) res = exe.run(fluid.default_main_program(), feed={}, fetch_list=[i]) print(res) # [array([10])] """ BEFORE_WHILE_BLOCK = 0 IN_WHILE_BLOCK = 1 AFTER_WHILE_BLOCK = 2 def __init__(self, cond, is_test=False, name=None): self.helper = LayerHelper("while", name=name) self.status = While.BEFORE_WHILE_BLOCK if not isinstance(cond, Variable): raise TypeError("condition should be a variable") assert isinstance(cond, Variable) if cond.dtype != core.VarDesc.VarType.BOOL: raise TypeError("condition should be a boolean variable") if reduce(lambda a, b: a * b, cond.shape, 1) != 1: raise TypeError( "condition expected shape as [], but given shape as {0}.". format(list(cond.shape))) self.cond_var = cond self.is_test = is_test def block(self): return WhileGuard(self) def _complete(self): main_program = self.helper.main_program while_block = main_program.current_block() parent_block = main_program.block(main_program.current_block() .parent_idx) inner_outputs = {self.cond_var.name} x_name_list = set() for op in while_block.ops: for iname in op.input_names: for in_var_name in op.input(iname): if in_var_name not in inner_outputs: x_name_list.add(in_var_name) for oname in op.output_names: for out_var_name in op.output(oname): inner_outputs.add(out_var_name) out_vars = [] for inner_out_name in inner_outputs: inner_var = parent_block._find_var_recursive(inner_out_name) if inner_var: out_vars.append(inner_var) step_scope = parent_block.create_var( type=core.VarDesc.VarType.STEP_SCOPES) parent_block.append_op( type='while', inputs={ 'X': [ parent_block._var_recursive(x_name) for x_name in x_name_list ], 'Condition': [self.cond_var] }, outputs={'Out': out_vars, 'StepScopes': [step_scope]}, attrs={'sub_block': while_block, "is_test": self.is_test}) def while_loop(cond, body, loop_vars, is_test=False, name=None): """ while_loop is one of the control flows. Repeats while_loop `body` until `cond` returns False. Args: cond(Callable): A callable returning a boolean tensor controlling whether to continue looping. body(Callable): A callable returning a tuple or list of tensors of the same arity (length and structure) and types as ``loops_vars`` . loop_vars(list|tuple): A list or tuple of tensors that is passed to both ``cond`` and ``body`` . is_test(bool, optional): A flag indicating whether execution is in test phase. Default value is False. name(str, optional): Normally there is no need for users to set this property. For more information, please refer to :ref:`api_guide_Name`. Default is None. Returns: A list or tuple of tensors which returned by ``body`` . Returen type: list(Variable)|tuple(Variable). Raises: TypeError: If the type of ``cond`` is not callable. TypeError: If the type of ``body`` is not callable. TypeError: If the type of ``loop_vars`` is not list or tuple. TypeError: If the type of ``cond`` returns is not Variable. TypeError: If the type of ``cond`` returns is not a boolean variable. TypeError: If the shape of ``cond`` returns is not equals 1. ValueError: If the ``var_loops`` is empty. Examples: .. code-block:: python import paddle.fluid as fluid import paddle.fluid.layers as layers def cond(i): return layers.less_than(i, ten) def body(i): return layers.increment(x=i, value=1, in_place=True) main_program = fluid.default_main_program() startup_program = fluid.default_startup_program() with fluid.program_guard(main_program, startup_program): i = layers.fill_constant(shape=[1], dtype='int64', value=0) # loop counter ten = layers.fill_constant(shape=[1], dtype='int64', value=10) # loop length out = layers.while_loop(cond, body, [i]) exe = fluid.Executor(fluid.CPUPlace()) res = exe.run(main_program, feed={}, fetch_list=out) print(res) # [array([10])] """ helper = LayerHelper('while_loop', **locals()) if not callable(cond): raise TypeError("cond in while_loop should be callable") if not callable(body): raise TypeError("body in while_loop should be callable") if not isinstance(loop_vars, (list, tuple)): raise TypeError("loop_vars in while_loop should be a list or tuple") if len(loop_vars) == 0: raise ValueError("loop_vars in while_loop should not be empty") pre_cond = cond(*loop_vars) if not isinstance(pre_cond, Variable): raise TypeError("cond in while_loop should return a variable") if pre_cond.dtype != core.VarDesc.VarType.BOOL: raise TypeError("cond in while_loop should return a boolean variable") if reduce(lambda a, b: a * b, pre_cond.shape, 1) != 1: raise TypeError( "the shape of the variable returned by cond should be []," "but given shape as {0}.".format(list(pre_cond.shape))) while_loop_block = While(pre_cond, is_test, name) with while_loop_block.block(): output_vars = body(*loop_vars) map_structure(assign, output_vars, loop_vars) if len(loop_vars) == 1: now_cond = cond(output_vars) else: now_cond = cond(*output_vars) assign(now_cond, pre_cond) return loop_vars def lod_rank_table(x, level=0): """ LoD Rank Table Operator. Given an input variable **x** and a level number of LoD, this layer creates a LodRankTable object. A LoDRankTable object contains a list of bi-element tuples. Each tuple consists of an index and a length, both of which are int type. Refering to specified level of LoD, the index is the sequence index number and the length representes the sequence length. Please note that the list is ranked in descending order by the length. The following is an example: .. code-block:: text x is a LoDTensor: x.lod = [[2, 1], [5, 1, 1]] x.data = [a, b, c, d, e, f, g] 1. set level to 0: Create lod rank table: lod_rank_table_obj = lod_rank_table(x, level=0) Get: lod_rank_table_obj.items() = [(0, 2), (1, 1)] 2. set level to 1: Create lod rank table: lod_rank_table_obj = lod_rank_table(x, level=1) Get: lod_rank_table_obj.items() = [(0, 5), (1, 1), (2, 1)] Args: x (Variable): Input variable, a LoDTensor based which to create the lod rank table. level (int): Specify the LoD level, on which to create the lod rank table. Returns: Variable: The created LoDRankTable object. Examples: .. code-block:: python import paddle.fluid as fluid x = fluid.layers.data(name='x', shape=[10], dtype='float32', lod_level=1) out = layers.lod_rank_table(x=x, level=0) """ helper = LayerHelper("lod_rank_table", **locals()) table = helper.create_variable( type=core.VarDesc.VarType.LOD_RANK_TABLE, name=unique_name.generate("lod_rank_table")) helper.append_op( type='lod_rank_table', inputs={'X': x}, outputs={'Out': table}, attrs={'level': level}) return table @templatedoc() def max_sequence_len(rank_table): """ ${comment} >>> import paddle.fluid as fluid >>> x = fluid.layers.data(name='x', shape=[10], dtype='float32', >>> lod_level=1) >>> rank_table = layers.lod_rank_table(x=x, level=0) >>> max_seq_len = layers.max_sequence_len(rank_table) Args: rank_table(${rank_table_type}): ${rank_table_comment}. Returns: ${out_comment}. """ helper = LayerHelper("max_seqence_len", **locals()) res = helper.create_variable_for_type_inference(dtype="int64") helper.append_op( type="max_sequence_len", inputs={"RankTable": rank_table}, outputs={"Out": res}) return res def lod_tensor_to_array(x, table): """ Convert a LoDTensor to a LoDTensorArray. This function split a LoDTesnor to a LoDTensorArray according to its LoD information. LoDTensorArray is an alias of C++ std::vector in PaddlePaddle. The generated LoDTensorArray of this function can be further read or written by `read_from_array()` and `write_to_array()` operators. However, this function is generally an internal component of PaddlePaddle `DynamicRNN`. Users should not use it directly. Args: x (Variable|list): The LoDTensor to be converted to a LoDTensorArray. table (ParamAttr|list): The variable that stores the level of lod which is ordered by sequence length in descending order. It is generally generated by `layers.lod_rank_table()` API. Returns: Variable: The LoDTensorArray that has been converted from the input tensor. Examples: .. code-block:: python import paddle.fluid as fluid x = fluid.layers.data(name='x', shape=[10]) table = fluid.layers.lod_rank_table(x, level=0) array = fluid.layers.lod_tensor_to_array(x, table) """ helper = LayerHelper("lod_tensor_to_array", **locals()) array = helper.create_variable( name=unique_name.generate("lod_tensor_to_array"), type=core.VarDesc.VarType.LOD_TENSOR_ARRAY, dtype=x.dtype) helper.append_op( type='lod_tensor_to_array', inputs={'X': x, 'RankTable': table}, outputs={'Out': array}) return array def array_to_lod_tensor(x, table): """Convert a LoD_Tensor_Aarry to an LoDTensor. Args: x (Variable|list): The lod tensor array to be converted to a tensor. table (ParamAttr|list): The variable that stores the level of lod which is ordered by sequence length in descending order. Returns: Variable: The variable of type tensor that has been converted from an array. Examples: .. code-block:: python import paddle.fluid as fluid x = fluid.layers.data(name='x', shape=[10]) table = fluid.layers.lod_rank_table(x, level=0) array = fluid.layers.lod_tensor_to_array(x, table) lod_tensor = fluid.layers.array_to_lod_tensor(array, table) """ helper = LayerHelper("array_to_lod_tensor", **locals()) tmp = helper.create_variable_for_type_inference(dtype=x.dtype) helper.append_op( type="array_to_lod_tensor", inputs={'X': x, 'RankTable': table}, outputs={'Out': tmp}) return tmp def increment(x, value=1.0, in_place=True): """ The OP is usually used for control flow to increment the data of :attr:`x` by an amount :attr:`value`. Notice that the number of elements in :attr:`x` must be equal to 1. Parameters: x (Variable): A tensor that must alway contain only one element, its data type supports float32, float64, int32 and int64. value (float, optional): The amount to increment the data of :attr:`x`. Default: 1.0. in_place (bool, optional): Whether the OP should be performed in-place. Default: True. Returns: Variable: The elementwise-incremented tensor with the same shape and data type as :attr:`x`. Examples: .. code-block:: python import paddle.fluid as fluid counter = fluid.layers.zeros(shape=[1], dtype='float32') # [0.] fluid.layers.increment(counter) # [1.] """ helper = LayerHelper("increment", **locals()) if not in_place: out = helper.create_variable_for_type_inference(dtype=x.dtype) else: out = x helper.append_op( type='increment', inputs={'X': [x]}, outputs={'Out': [out]}, attrs={'step': float(value)}) return out def array_write(x, i, array=None): """ This OP writes the input ``x`` into the i-th position of the ``array`` :ref:`api_fluid_LoDTensorArray` and returns the modified array. If ``array`` is none, a new LoDTensorArray will be created and returned. This OP is often used together with :ref:`api_fluid_layers_array_read` OP. Args: x (Variable): The input data to be written into array. It's multi-dimensional Tensor or LoDTensor. Data type: float32, float64, int32, int64. i (Variable): 1-D Tensor with shape [1], which represents the position into which ``x`` is written. Data type: int64. array (LoDTensorArray, optional): The LoDTensorArray into which ``x`` is written. The default value is None, when a new LoDTensorArray will be created and returned as a result. Returns: Variable: The input ``array`` after ``x`` is written into. Examples: .. code-block:: python import paddle.fluid as fluid tmp = fluid.layers.fill_constant(shape=[3, 2], dtype='int64', value=5) i = fluid.layers.fill_constant(shape=[1], dtype='int64', value=10) # Write tmp into the position of arr with subscript 10 and return arr. arr = fluid.layers.array_write(tmp, i=i) # Now, arr is a LoDTensorArray with length 11. We can use array_read OP to read # the data at subscript 10 and print it out. item = fluid.layers.array_read(arr, i=i) input = fluid.layers.Print(item, message="The content of i-th LoDTensor:") main_program = fluid.default_main_program() exe = fluid.Executor(fluid.CPUPlace()) exe.run(main_program) # The printed result is: # 1570533133 The content of i-th LoDTensor: The place is:CPUPlace # Tensor[array_read_0.tmp_0] # shape: [3,2,] # dtype: l # data: 5,5,5,5,5,5, # the output is 2-D Tensor with shape [3,2], which is tmp above. # dtype is the corresponding C++ data type, which may vary in different environments. # Eg: if the data type of tensor is int64, then the corresponding C++ data type is int64_t, # so the dtype value is typeid(int64_t).Name(), which is 'x' on MacOS, 'l' on Linux, # and '__int64' on Windows. They both represent 64-bit integer variables. """ helper = LayerHelper('array_write', **locals()) if array is None: array = helper.create_variable( name="{0}.out".format(helper.name), type=core.VarDesc.VarType.LOD_TENSOR_ARRAY, dtype=x.dtype) helper.append_op( type='write_to_array', inputs={'X': [x], 'I': [i]}, outputs={'Out': [array]}) return array def create_array(dtype): """ This OP creates an LOD_TENSOR_ARRAY. It is used as the input of :ref:`api_fluid_layers_array_read` and :ref:`api_fluid_layers_array_write`. Also it can be used with :ref:`api_fluid_layers_While` to create RNN network. Args: dtype (str): The data type of the elements in the lod_tensor_array. Support data type: float32, float64, int32, int64. Returns: Variable: The empty lod_tensor_array. The data type of elements in Tensor is ``dtype``. Examples: .. code-block:: python import paddle.fluid as fluid data = fluid.layers.create_array(dtype='float32') # Create a float32 LoDTensorArray. """ helper = LayerHelper("array", **locals()) return helper.create_variable( name="{0}.out".format(helper.name), type=core.VarDesc.VarType.LOD_TENSOR_ARRAY, dtype=dtype) @templatedoc() def less_than(x, y, force_cpu=None, cond=None): """ ${comment} Args: x(${x_type}): ${x_comment}. y(${y_type}): ${y_comment}. force_cpu(${force_cpu_type}): ${force_cpu_comment}. cond(Variable|None): Optional output variable to store the result of *less_than* Returns: ${out_comment}. Examples: .. code-block:: python import paddle.fluid as fluid import numpy as np # Graph Organizing x = fluid.layers.data(name='x', shape=[2], dtype='float64') y = fluid.layers.data(name='y', shape=[2], dtype='float64') result = fluid.layers.less_than(x=x, y=y) # The comment lists another available method. # result = fluid.layers.fill_constant(shape=[2], dtype='float64', value=0) # fluid.layers.less_than(x=x, y=y, cond=result) # Create an executor using CPU as example exe = fluid.Executor(fluid.CPUPlace()) # Execute x_i = np.array([[1, 2], [3, 4]]).astype(np.float64) y_i = np.array([[2, 2], [1, 3]]).astype(np.float64) result_value, = exe.run(fluid.default_main_program(), feed={'x':x_i, 'y':y_i}, fetch_list=[result]) print(result_value) # [[True, False], [False, False]] """ helper = LayerHelper("less_than", **locals()) if cond is None: cond = helper.create_variable_for_type_inference(dtype='bool') cond.stop_gradient = True attrs = dict() if force_cpu is not None: attrs['force_cpu'] = force_cpu helper.append_op( type='less_than', inputs={'X': [x], 'Y': [y]}, outputs={'Out': [cond]}, attrs=attrs) return cond @templatedoc() def less_equal(x, y, cond=None): """ This OP returns the truth value of :math:`x <= y` elementwise, which is equivalent function to the overloaded operator `<=`. Args: x(Variable): First input to compare which is N-D tensor. The input data type should be float32, float64, int32, int64. y(Variable): Second input to compare which is N-D tensor. The input data type should be float32, float64, int32, int64. cond(Variable, optional): If is :attr:`None`, the op will create a variable as output tensor, the input shape and data type of \ this tensor is the same as input :attr:`x`. If is not :attr:`None`, the op will set the variable as output tensor, the input shape \ and data type of this tensor should be the same as input :attr:`x`. Default value is :attr:`None`. Returns: Variable, the output data type is bool.: The tensor variable storing the output, the output shape is the same as input :attr:`x`. Examples: .. code-block:: python import paddle.fluid as fluid import numpy as np label = fluid.layers.assign(np.array([1, 3], dtype='int32')) limit = fluid.layers.assign(np.array([1, 2], dtype='int32')) out = fluid.layers.less_equal(x=label, y=limit) #out=[True, False] out1 = label<= limit #out1=[True, False] """ helper = LayerHelper("less_equal", **locals()) if cond is None: cond = helper.create_variable_for_type_inference(dtype='bool') cond.stop_gradient = True attrs = dict() helper.append_op( type='less_equal', inputs={'X': [x], 'Y': [y]}, outputs={'Out': [cond]}, attrs=attrs) return cond @templatedoc() def greater_than(x, y, cond=None): """ This OP returns the truth value of :math:`x > y` elementwise, which is equivalent function to the overloaded operator `>`. Args: x(Variable): First input to compare which is N-D tensor. The input data type should be float32, float64, int32, int64. y(Variable): Second input to compare which is N-D tensor. The input data type should be float32, float64, int32, int64. cond(Variable, optional): If is :attr:`None`, the op will create a variable as output tensor, the shape and data type of this \ tensor is the same as input :attr:`x` . If is not :attr:`None`, the op will set the variable as output tensor, the shape and data type \ of this tensor should be the same as input :attr:`x` . Default value is :attr:`None`. Returns: Variable, the output data type is bool.: The tensor variable storing the output, the output shape is the same as input :attr:`x` . Examples: .. code-block:: python import paddle.fluid as fluid import numpy as np label = fluid.layers.assign(np.array([2, 3], dtype='int32')) limit = fluid.layers.assign(np.array([3, 2], dtype='int32')) out = fluid.layers.greater_than(x=label, y=limit) #out=[False, True] out1 = label > limit #out1=[False, True] """ helper = LayerHelper("greater_than", **locals()) if cond is None: cond = helper.create_variable_for_type_inference(dtype='bool') cond.stop_gradient = True attrs = dict() helper.append_op( type='greater_than', inputs={'X': [x], 'Y': [y]}, outputs={'Out': [cond]}, attrs=attrs) return cond @templatedoc() def greater_equal(x, y, cond=None): """ This OP returns the truth value of :math:`x >= y` elementwise, which is equivalent function to the overloaded operator `>=`. Args: x(Variable): First input to compare which is N-D tensor. The input data type should be float32, float64, int32, int64. y(Variable): Second input to compare which is N-D tensor. The input data type should be float32, float64, int32, int64. cond(Variable, optional): If is :attr:`None` , the op will create a variable as output tensor, the shape and data type of this \ tensor is the same as input :attr:`x`. If is not :attr:`None` , the op will set the variable as output tensor, the shape and data \ type of this tensor is the same as input :attr:`x`. Default value is :attr:`None`. Returns: Variable, the output data type is bool.: The tensor variable storing the output, the output shape is the same as input :attr:`x`. Examples: .. code-block:: python import paddle.fluid as fluid import numpy as np label = fluid.layers.assign(np.array([2, 2], dtype='int32')) limit = fluid.layers.assign(np.array([2, 3], dtype='int32')) out = fluid.layers.greater_equal(x=label, y=limit) #out=[True, False] out_1 = label >= limit #out1=[True, False] """ helper = LayerHelper("greater_equal", **locals()) if cond is None: cond = helper.create_variable_for_type_inference(dtype='bool') cond.stop_gradient = True attrs = dict() helper.append_op( type='greater_equal', inputs={'X': [x], 'Y': [y]}, outputs={'Out': [cond]}, attrs=attrs) return cond def equal(x, y, cond=None): """ This layer returns the truth value of :math:`x == y` elementwise. Args: x(Variable): Tensor, data type is float32, float64, int32, int64. y(Variable): Tensor, data type is float32, float64, int32, int64. cond(Variable, optional): Optional output which can be any created Variable that meets the requirements to store the result of *equal*. if cond is None, a new Varibale will be created to store the result. Returns: Variable: output Tensor, it's shape is the same as the input's Tensor, and the data type is bool. Examples: .. code-block:: python import paddle.fluid as fluid import numpy as np out_cond =fluid.data(name="input1", shape=[2], dtype='bool') label = fluid.layers.assign(np.array([3, 3], dtype="int32")) limit = fluid.layers.assign(np.array([3, 2], dtype="int32")) label_cond = fluid.layers.assign(np.array([1, 2], dtype="int32")) out1 = fluid.layers.equal(x=label,y=limit) #out1=[True, False] out2 = fluid.layers.equal(x=label_cond,y=limit, cond=out_cond) #out2=[False, True] out_cond=[False, True] """ helper = LayerHelper("equal", **locals()) if cond is None: cond = helper.create_variable_for_type_inference(dtype='bool') cond.stop_gradient = True helper.append_op( type='equal', inputs={'X': [x], 'Y': [y]}, outputs={'Out': [cond]}) return cond def not_equal(x, y, cond=None): """ This OP returns the truth value of :math:`x != y` elementwise, which is equivalent function to the overloaded operator `!=`. Args: x(Variable): First input to compare which is N-D tensor. The input data type should be float32, float64, int32, int64. y(Variable): Second input to compare which is N-D tensor. The input data type should be float32, float64, int32, int64. cond(Variable, optional): If is :attr:`None`, the op will create a variable as output tensor, the shape and data type of this \ tensor is the same as input :attr:`x`. If is not :attr:`None`, the op will set the variable as output tensor, the shape and data \ type of this tensor should be the same as input :attr:`x`. Default value is :attr:`None`. Returns: Variable, the output data type is bool.: The tensor variable storing the output, the output shape is the same as input :attr:`x`. Examples: .. code-block:: python import paddle.fluid as fluid label = fluid.layers.data(name='label', shape=[1], dtype='int64') limit = fluid.layers.fill_constant(shape=[1], value=1, dtype='int64') out = fluid.layers.not_equal(x=label, y=limit) """ helper = LayerHelper("not_equal", **locals()) if cond is None: cond = helper.create_variable_for_type_inference(dtype='bool') cond.stop_gradient = True helper.append_op( type='not_equal', inputs={'X': [x], 'Y': [y]}, outputs={'Out': [cond]}) return cond def array_read(array, i): """ This OP is used to read data at the specified position from the input array :ref:`api_fluid_LoDTensorArray` . ``array`` is the input array and ``i`` is the specified read position. This OP is often used together with :ref:`api_fluid_layers_array_write` OP. Case 1: :: Input: The shape of first three tensors are [1], and that of the last one is [1,2]: array = ([0.6], [0.1], [0.3], [0.4, 0.2]) And: i = [3] Output: output = [0.4, 0.2] Args: array (LoDTensorArray): The input LoDTensorArray. i (Variable): 1-D Tensor, whose shape is [1] and dtype is int64. It represents the specified read position of ``array``. Returns: Variable: The LoDTensor or Tensor that is read at the specified position of ``array``. Examples: .. code-block:: python # First we're going to create a LoDTensorArray, then we're going to write the Tensor into # the specified position, and finally we're going to read the Tensor at that position. import paddle.fluid as fluid arr = fluid.layers.create_array(dtype='float32') tmp = fluid.layers.fill_constant(shape=[3, 2], dtype='int64', value=5) i = fluid.layers.fill_constant(shape=[1], dtype='int64', value=10) # tmp is the Tensor with shape [3,2], and if we write it into the position with subscript 10 # of the empty-array: arr, then the length of arr becomes 11. arr = fluid.layers.array_write(tmp, i, array=arr) # Read the data of the position with subscript 10. item = fluid.layers.array_read(arr, i) # You can print out the data via executor. input = fluid.layers.Print(item, message="The LoDTensor of the i-th position:") main_program = fluid.default_main_program() exe = fluid.Executor(fluid.CPUPlace()) exe.run(main_program) # The printed result is: # 1569588169 The LoDTensor of the i-th position: The place is:CPUPlace # Tensor[array_read_0.tmp_0] # shape: [3,2,] # dtype: l # data: 5,5,5,5,5,5, # the output is 2-D Tensor with shape [3,2]. # dtype is the corresponding C++ data type, which may vary in different environments. # Eg: if the data type of tensor is int64, then the corresponding C++ data type is int64_t, # so the dtype value is typeid(int64_t).Name(), which is 'x' on MacOS, 'l' on Linux, # and '__int64' on Windows. They both represent 64-bit integer variables. """ helper = LayerHelper('array_read', **locals()) if not isinstance( array, Variable) or array.type != core.VarDesc.VarType.LOD_TENSOR_ARRAY: raise TypeError("array should be tensor array vairable") out = helper.create_variable_for_type_inference(dtype=array.dtype) helper.append_op( type='read_from_array', inputs={'X': [array], 'I': [i]}, outputs={'Out': [out]}) return out def shrink_memory(x, i, table): """ This function creates an operator to shrink rnn memory using the RankTable as mentioned in the input parameter. NOTE: This API is very low-level API. It is used by DynamicRNN only. Since the Dynamic RNN uses no-padding way to implement RNN. The sequence will be sorted by order, and the length of valid memory will be shrink after each time step. Args: x(Variable): The memory object in the previous time step. i(Variable): The step count variable. A int scalar as LoDTensor. table(Variable): The RNNRankTable object. Returns: the memory variable after shrink. Examples: Since this API is very low level API. The example is not provided. Please reference the implementation of class DynamicRNN for detail usage. """ helper = LayerHelper('shrink_memory', **locals()) out = helper.create_variable_for_type_inference(dtype=x.dtype) helper.append_op( type='shrink_rnn_memory', inputs={'X': [x], 'I': [i], 'RankTable': [table]}, outputs={'Out': [out]}, attrs={}) return out def array_length(array): """ This OP is used to get the length of the input array :ref:`api_fluid_LoDTensorArray` . It can be used together with :ref:`api_fluid_layers_array_read` , :ref:`api_fluid_layers_array_write` , :ref:`api_fluid_layers_While` OP to traverse, read and wirte LoDTensorArray. Args: array (LoDTensorArray): The input array that will be used to compute the length. Returns: Variable: 1-D Tensor with shape [1], which is the length of array. Datatype: int64. Examples: .. code-block:: python import paddle.fluid as fluid tmp = fluid.layers.zeros(shape=[10], dtype='int32') i = fluid.layers.fill_constant(shape=[1], dtype='int64', value=10) # tmp is 1-D Tensor with shape [10]. We write tmp into arr on subscript 10, # then the length of arr becomes 11. arr = fluid.layers.array_write(tmp, i=i) # return the length of arr arr_len = fluid.layers.array_length(arr) # You can use executor to print out the length of LoDTensorArray. input = fluid.layers.Print(arr_len, message="The length of LoDTensorArray:") main_program = fluid.default_main_program() exe = fluid.Executor(fluid.CPUPlace()) exe.run(main_program) # The printed result is: # 1569576542 The length of LoDTensorArray: The place is:CPUPlace # Tensor[array_length_0.tmp_0] # shape: [1,] # dtype: l # data: 11, # 1-D Tensor with shape [1], whose value is 11. It means that the length of LoDTensorArray # is 11. # dtype is the corresponding C++ data type, which may vary in different environments. # Eg: if the data type of tensor is int64, then the corresponding C++ data type is int64_t, # so the dtype value is typeid(int64_t).Name(), which is 'x' on MacOS, 'l' on Linux, # and '__int64' on Windows. They both represent 64-bit integer variables. """ helper = LayerHelper('array_length', **locals()) tmp = helper.create_variable_for_type_inference(dtype='int64') tmp.stop_gradient = True helper.append_op( type='lod_array_length', inputs={'X': [array]}, outputs={'Out': [tmp]}) return tmp class ConditionalBlockGuard(BlockGuard): """ ConditionalBlockGuard is derived from BlockGuard. It is dedicated for holding a ConditionalBlock, and helping users entering and exiting the ConditionalBlock via Python's 'with' keyword. However, ConditionalBlockGuard is generally an internal component of IfElse, users should not use it directly. """ def __init__(self, block): if not isinstance(block, ConditionalBlock): raise TypeError("block should be conditional block") super(ConditionalBlockGuard, self).__init__(block.helper.main_program) self.block = block def __enter__(self): return super(ConditionalBlockGuard, self).__enter__() def __exit__(self, exc_type, exc_val, exc_tb): self.block.complete() return super(ConditionalBlockGuard, self).__exit__(exc_type, exc_val, exc_tb) class ConditionalBlock(object): ''' **ConditionalBlock** ConditionalBlock is an operator that bind a block to a specific condition, if the condition matches, the corresponding block will be executed. Args: inputs (Variable): bool conditions. is_scalar_condition (bool): whether the branch is controled by a scalar. name(str): name of this ConditionalBlock. Examples: .. code-block:: python import paddle.fluid as fluid cond = layers.less_than(x=label, y=limit) true_image, false_image = layers.split_lod_tensor( input=image, mask=cond) true_cond = layers.ConditionalBlock([true_image]) with true_cond.block(): ... with false_cond.block(): ... ''' def __init__(self, inputs, is_scalar_condition=False, name=None): for each_input in inputs: if not isinstance(each_input, Variable): raise TypeError("Each input should be variable") self.inputs = inputs self.is_scalar_condition = is_scalar_condition self.helper = LayerHelper('conditional_block', name=name) def block(self): return ConditionalBlockGuard(self) def complete(self): inside_block = self.helper.main_program.current_block() parent_block = self.helper.main_program.block(inside_block.parent_idx) intermediate = set() params = set() for each_op in inside_block.ops: assert isinstance(each_op, Operator) for iname in each_op.input_names: for in_var_name in each_op.input(iname): if in_var_name not in intermediate: params.add(in_var_name) for oname in each_op.output_names: for out_var_name in each_op.output(oname): intermediate.add(out_var_name) input_set = set([ipt.name for ipt in self.inputs]) # Todo(liym27) Here assume that all params are in recursive parent block # but when minimize() called in control flow, some params may be in # conditional grad block param_list = [ parent_block._var_recursive(each_name) for each_name in params ] out_list = [] for inner_out_name in intermediate: inner_var = parent_block._find_var_recursive(inner_out_name) if inner_var: out_list.append(inner_var) step_scope = parent_block.create_var( type=core.VarDesc.VarType.STEP_SCOPES) conditional_block_op = parent_block.append_op( type='conditional_block', inputs={ 'Cond': self.inputs, 'Input': param_list, }, outputs={'Out': out_list, 'Scope': [step_scope]}, attrs={ 'sub_block': inside_block, 'is_scalar_condition': self.is_scalar_condition }) if self.need_append_conditional_block_grad(inside_block): self.append_conditional_block_grad(parent_block, inside_block, conditional_block_op) def need_append_conditional_block_grad(self, inside_block): grad_sub_block_idx = inside_block.backward_block_idx return grad_sub_block_idx != -1 def append_conditional_block_grad(self, parent_block, inside_block, conditional_block_op): ''' Append op `conditional_block_grad` manually. When `optimizer.minimize/append_backward` is called in Paddle control flow, grad ops will be appended before appending op `conditional_block` so that op `conditional_block_grad` can't be appended when calling `optimizer.minimize/append_backward`. After appending op `conditional_block`, `conditional_block_grad` is appended manually. Args: parent_block (Block): The block that `conditional_block_op` blongs to. inside_block (Block): The sub block of `conditional_block_op`. conditional_block_op (Operator): The forward op conditional_block. ''' grad_sub_block_idx = inside_block.backward_block_idx grad_sub_block = self.helper.main_program.block(grad_sub_block_idx) intermediate = set() params = set() for each_op in grad_sub_block.ops: assert isinstance(each_op, Operator) for iname in each_op.input_names: for in_var_name in each_op.input(iname): if in_var_name not in intermediate: params.add(in_var_name) for oname in each_op.output_names: for out_var_name in each_op.output(oname): intermediate.add(out_var_name) param_list = [] for inner_input_name in params: inner_var = parent_block._find_var_recursive(inner_input_name) if inner_var: param_list.append(cpt.to_text(inner_var.name)) grad_op_desc, op_grad_to_var = core.get_grad_op_desc( conditional_block_op.desc, cpt.to_text(set()), [grad_sub_block.desc]) # append op_desc in grad_op_descs to target_block op_role_attr_name = core.op_proto_and_checker_maker.kOpRoleAttrName() backward = core.op_proto_and_checker_maker.OpRole.Backward new_op_desc = parent_block.desc.append_op() new_op_desc.copy_from(grad_op_desc[0]) new_op_desc._set_attr(op_role_attr_name, backward) # set input and output manually new_op_desc.set_input('Input', param_list) new_op_desc.set_output('Input@GRAD', [param + "@GRAD" for param in param_list]) new_vars = set() for grad_var_name in new_op_desc.output_arg_names(): if grad_sub_block.desc.has_var_recursive( cpt.to_bytes(grad_var_name) ) or grad_var_name == core.empty_var_name(): continue grad_sub_block.desc.var(cpt.to_bytes(grad_var_name)) new_vars.add(grad_var_name) if grad_var_name not in op_grad_to_var: continue # infer_shape and infer_type new_op_desc.infer_var_type(grad_sub_block.desc) new_op_desc.infer_shape(grad_sub_block.desc) for arg in new_op_desc.output_arg_names(): if arg in new_vars: _infer_var_data_type_shape_(arg, grad_sub_block) self.helper.main_program._sync_with_cpp() def copy_var_to_parent_block(var, layer_helper): if var is None: return None prog = layer_helper.main_program parent_idx = prog.current_block().parent_idx assert parent_idx >= 0, "Got wrong parent block index when assigning var to parent scope in control_flow" parent_block = prog.block(parent_idx) parent_block_var = parent_block.create_var( dtype=var.dtype, shape=var.shape, type=var.type) assign(var, parent_block_var) return parent_block_var def cond(pred, true_fn=None, false_fn=None, name=None): """ This API returns ``true_fn()`` if the predicate ``pred`` is true else ``false_fn()`` . Users could also set ``true_fn`` or ``false_fn`` to ``None`` if do nothing and this API will treat the callable simply returns ``None`` in this case. ``true_fn`` and ``false_fn`` should return same nest structure of tensors or both return ``None`` if user doens't like to return anything. A nest structure of tensors in PaddlePaddle is tensor(s), or tuple of tensors, or list of tensors. Note: 1. The tuples or lists returned by ``true_fn`` and ``false_fn`` must have the same shape because of dataflow model of PaddlePaddle while the tensors in the tuples or the lists can have different shapes. 2. Any tensors or operations created outside of ``true_fn`` and ``false_fn`` will be executed regardless of which branch is selected at runtime. This has frequently surprised users who expected a lazy semantics. For example: .. code-block:: python import paddle.fluid as fluid a = fluid.data(name='a', shape=[-1, 1], dtype='float32') b = fluid.data(name='b', shape=[-1, 1], dtype='float32') c = a * b out = fluid.layers.cond(a < b, lambda: a + c, lambda: b * b) No matter whether ``a < b`` , ``c = a * b`` will run. Args: pred(Variable): A boolean tensor whose numel should be 1. The boolean value determines whether to return the result of ``true_fn`` or ``false_fn`` . true_fn(callable, optional): A callable to be performed if ``pred`` is true. The default value is ``None`` . false_fn(callable, optional): A callable to be performed if ``pred`` is false. The default value is ``None`` . name(str, optional): The default value is ``None`` . Normally users don't have to set this parameter. For more information, please refer to :ref:`api_guide_Name` . Returns: Variable|list(Variable)|tuple(Variable): returns ``true_fn()`` if the predicate ``pred`` is true else ``false_fn()`` . Raises: TypeError: if ``true_fn`` or ``false_fn`` is not callable. ValueError: if ``true_fn`` and ``false_fn`` don't return the same nest structure of tensors. Examples: .. code-block:: python import paddle.fluid as fluid import paddle.fluid.layers as layers from paddle.fluid.executor import Executor from paddle.fluid.framework import Program, program_guard # # pseudocode: # if 0.1 < 0.23: # return 1, True # else: # return 3, 2 # def true_func(): return layers.fill_constant( shape=[1, 2], dtype='int32', value=1), layers.fill_constant( shape=[2, 3], dtype='bool', value=True) def false_func(): return layers.fill_constant( shape=[3, 4], dtype='float32', value=3), layers.fill_constant( shape=[4, 5], dtype='int64', value=2) main_program = Program() startup_program = Program() with program_guard(main_program, startup_program): x = layers.fill_constant(shape=[1], dtype='float32', value=0.1) y = layers.fill_constant(shape=[1], dtype='float32', value=0.23) pred = layers.less_than(x, y) out = layers.cond(pred, true_func, false_func) # out is a tuple containing 2 tensors place = fluid.CUDAPlace(0) if fluid.core.is_compiled_with_cuda( ) else fluid.CPUPlace() exe = fluid.Executor(place) ret = exe.run(main_program, fetch_list=out) # ret[0] = [[1 1]] # ret[1] = [[ True True True] # [ True True True]] """ helper = LayerHelper('cond', **locals()) true_output = None false_output = None copy_to_parent_func = lambda var: copy_var_to_parent_block(var, helper) if true_fn is not None: if not callable(true_fn): raise TypeError("The true_fn in cond must be callable") true_cond_block = ConditionalBlock([pred], is_scalar_condition=True) with true_cond_block.block(): origin_true_output = true_fn() if origin_true_output is not None: true_output = map_structure(copy_to_parent_func, origin_true_output) if false_fn is not None: if not callable(false_fn): raise TypeError("The false_fn in cond must be callable") false_cond_block = ConditionalBlock( [logical_not(pred)], is_scalar_condition=True) with false_cond_block.block(): origin_false_output = false_fn() if origin_false_output is not None: false_output = map_structure(copy_to_parent_func, origin_false_output) if true_output is None and false_output is None: return None if true_output is None: raise ValueError( "Incompatible return values of true_fn and false_fn in cond: " "true_fn returns None while false_fn returns non-None") if false_output is None: raise ValueError( "Incompatible return values of true_fn and false_fn in cond: " "true_fn returns non-None while false_fn returns None") # Merge ture and false output if they are not None try: assert_same_structure(true_output, false_output, check_types=False) except ValueError as e: raise ValueError( "Incompatible return values of true_fn and false_fn in cond: {}". format(e)) mask = cast(pred, dtype='int32') merge_func = lambda false_var, true_var : select_input([false_var, true_var], mask) merged_output = map_structure(merge_func, false_output, true_output) return merged_output def _error_message(what, arg_name, op_name, right_value, error_value): error_message = "{what} of '{arg_name}' in Op({op_name}) must be " \ "{right_value}, but received: {error_value}.".format( what=what, arg_name=arg_name, op_name=op_name, right_value=right_value, error_value=error_value) return error_message def case(pred_fn_pairs, default=None, name=None): ''' This operator works like an if-elif-elif-else chain. Args: pred_fn_pairs(list|tuple): A list or tuple of (pred, fn) pairs. ``pred`` is a boolean Tensor with shape [1], ``fn`` is a callable. All callables return the same structure of Tensors. default(callable, optional): Callable that returns a structure of Tensors. name(str, optional): The default value is None. Normally there is no need for user to set this property. For more information, please refer to :ref:`api_guide_Name`. Returns: Variable|list(Variable): Tensors returned by the callable from the first pair whose pred is True, or Tensors returned by ``default`` if no pred in ``pred_fn_pairs`` is True and ``default`` is not None, or Tensors returned by the last callable in ``pred_fn_pairs`` if no pred in ``pred_fn_pairs`` is True and ``default`` is None. Raises: TypeError: If the type of ``pred_fn_pairs`` is not list or tuple. TypeError: If the type of elements in ``pred_fn_pairs`` is not tuple. TypeError: If the size of tuples in ``pred_fn_pairs`` is not 2. TypeError: If the first element of 2-tuple in ``pred_fn_pairs`` is not Variable. TypeError: If the second element of 2-tuple in ``pred_fn_pairs`` is not callable. TypeError: If ``default`` is not None but it is not callable. Examples: .. code-block:: python import paddle.fluid as fluid import paddle.fluid.layers as layers def fn_1(): return layers.fill_constant(shape=[1, 2], dtype='float32', value=1) def fn_2(): return layers.fill_constant(shape=[2, 2], dtype='int32', value=2) def fn_3(): return layers.fill_constant(shape=[3], dtype='int32', value=3) main_program = fluid.default_startup_program() startup_program = fluid.default_main_program() with fluid.program_guard(main_program, startup_program): x = layers.fill_constant(shape=[1], dtype='float32', value=0.3) y = layers.fill_constant(shape=[1], dtype='float32', value=0.1) z = layers.fill_constant(shape=[1], dtype='float32', value=0.2) pred_1 = layers.less_than(z, x) # true: 0.2 < 0.3 pred_2 = layers.less_than(x, y) # false: 0.3 < 0.1 pred_3 = layers.equal(x, y) # false: 0.3 == 0.1 # Call fn_1 because pred_1 is True out_1 = layers.case( pred_fn_pairs=[(pred_1, fn_1), (pred_2, fn_2)], default=fn_3) # Argument default is None and no pred in pred_fn_pairs is True. fn_3 will be called. # because fn_3 is the last callable in pred_fn_pairs. out_2 = layers.case(pred_fn_pairs=[(pred_2, fn_2), (pred_3, fn_3)]) exe = fluid.Executor(fluid.CPUPlace()) res_1, res_2 = exe.run(main_program, fetch_list=[out_1, out_2]) print(res_1) # [[1. 1.]] print(res_2) # [3 3 3] ''' helper = LayerHelper('case', **locals()) def _case_check_args(pred_fn_pairs, default): ''' Check arguments pred_fn_pairs and default. Return canonical pre_fn_pairs and default. ''' if not isinstance(pred_fn_pairs, (list, tuple)): raise TypeError( _error_message("The type", "pred_fn_pairs", "case", "list or tuple", type(pred_fn_pairs))) for pred_fn in pred_fn_pairs: if not isinstance(pred_fn, tuple): raise TypeError( _error_message("The elements' type", "pred_fn_pairs", "case", "tuple", type(pred_fn))) if len(pred_fn) != 2: raise TypeError( _error_message("The tuple's size", "pred_fn_pairs", "case", "2", str(len(pred_fn)) + "-tuple")) pred, fn = pred_fn if not isinstance(pred, Variable): raise TypeError( _error_message("The pred's type", "pred_fn_pairs", "case", "boolean Variable", type(pred))) if not callable(fn): raise TypeError( "The fn for {} of pred_fn_pairs in Op(case) must" " be callable.".format(pred.name)) if default is None: default_index = len(pred_fn_pairs) - 1 # pick the last one default = pred_fn_pairs[default_index][1] pred_fn_pairs = pred_fn_pairs[:default_index] elif not callable(default): raise TypeError("The default in Op(case) must be callable.") return pred_fn_pairs, default pred_fn_pairs, default = _case_check_args(pred_fn_pairs, default) false_fn = default for pred, true_fn in reversed(pred_fn_pairs): false_fn = partial(cond, pred=pred, true_fn=true_fn, false_fn=false_fn) final_fn = false_fn return final_fn() class Switch(object): """ This class is used to implement Switch branch control function. Switch branch contains several case branches and one default branch. Switch control flow checks whether the case branch conditions are satisfied in turn, and only executes the statement after the first case branch that satisfies the conditions. If there is no case branch that satisfies the condition, only the statement following the default branch is executed. Note: A new OP :ref:`api_fluid_layers_case` is highly recommended instead of ``Switch`` if the shape of parameter ``cond`` is [1]. OP :ref:`api_fluid_layers_case` is easier to use and is called with less code but does the same thing as ``Switch`` . Member Functions: case(cond): The case branch of Switch whose parameter cond is a scalar Variable of bool type. Only if the cond of the current case branch is True and the cond of the previous case branch is False, the statement after the case branch will be executed, and the statement after the case branch will not be executed. default(): The default branch of Switch. When cond of all case branches is False, the statement after default branch is executed. Case and default functions can only be used inside the scope of Switch, as shown below: .. code-block:: python ''' with fluid.layers.Switch() as switch: with switch.case(cond1): i = fluid.layers.fill_constant(shape=[1], dtype='int64', value=1) with switch.case(cond2): i = fluid.layers.fill_constant(shape=[1], dtype='int64', value=2) with switch.default(): i = fluid.layers.fill_constant(shape=[1], dtype='int64', value=0) ''' Args: name(str, optional): The default value is None. Normally there is no need for user to set this property. For more information, please refer to :ref:`api_guide_Name` . Examples: .. code-block:: python import paddle.fluid as fluid lr = fluid.layers.create_global_var( shape=[1], value=0.0, dtype='float32', persistable=True, name="learning_rate") zero_var = fluid.layers.fill_constant( shape=[1], dtype='float32', value=0.0) one_var = fluid.layers.fill_constant( shape=[1], dtype='float32', value=1.0) two_var = fluid.layers.fill_constant( shape=[1], dtype='float32', value=2.0) global_step = fluid.layers.autoincreased_step_counter(counter_name='@LR_DECAY_COUNTER@', begin=0, step=1) with fluid.layers.control_flow.Switch() as switch: with switch.case(global_step == zero_var): fluid.layers.assign(input=one_var, output=lr) with switch.default(): fluid.layers.assign(input=two_var, output=lr) exe = fluid.Executor(fluid.CPUPlace()) exe.run(fluid.default_startup_program()) res = exe.run(fluid.default_main_program(), feed={}, fetch_list=[lr]) print(res) # [array([1.], dtype=float32)] """ def __init__(self, name=None): self.helper = LayerHelper('switch', name=name) self.inside_scope = False self.pre_not_conditions = [] def case(self, condition): if not self.inside_scope: raise ValueError("case should be called inside with") if len(self.pre_not_conditions) == 0: cond_block = ConditionalBlock([condition], is_scalar_condition=True) not_cond = logical_not(x=condition) self.pre_not_conditions.append(not_cond) else: pre_cond_num = len(self.pre_not_conditions) pre_not_cond = self.pre_not_conditions[pre_cond_num - 1] new_not_cond = logical_and( x=pre_not_cond, y=logical_not(x=condition)) self.pre_not_conditions.append(new_not_cond) cond_block = ConditionalBlock( [logical_and( x=pre_not_cond, y=condition)], is_scalar_condition=True) return ConditionalBlockGuard(cond_block) def default(self): pre_cond_num = len(self.pre_not_conditions) if pre_cond_num == 0: raise ValueError("there should be at least one condition") cond_block = ConditionalBlock( [self.pre_not_conditions[pre_cond_num - 1]], is_scalar_condition=True) return ConditionalBlockGuard(cond_block) def __enter__(self): """ set flag that now is inside switch.block {} :return: """ self.inside_scope = True return self def __exit__(self, exc_type, exc_val, exc_tb): self.inside_scope = False if exc_type is not None: return False # re-raise exception return True class IfElseBlockGuard(object): def __init__(self, is_true, ifelse): if not isinstance(ifelse, IfElse): raise TypeError("ifelse must be an instance of IfElse class") if ifelse.status != IfElse.OUT_IF_ELSE_BLOCKS: raise ValueError("You cannot invoke IfElse.block() inside a block") self.is_true = is_true self.ie = ifelse if is_true: self.cond_block = ifelse.conditional_true_block else: self.cond_block = ifelse.conditional_false_block if not isinstance(self.cond_block, ConditionalBlock): raise TypeError("Unexpected situation") self.cond_block = self.cond_block.block() def __enter__(self): self.ie.status = IfElse.IN_IF_ELSE_TRUE_BLOCKS if self.is_true else IfElse.IN_IF_ELSE_FALSE_BLOCKS self.cond_block.__enter__() def __exit__(self, exc_type, exc_val, exc_tb): if not self.cond_block.__exit__(exc_type, exc_val, exc_tb): # re-raise inside exception return False if len(self.ie.output_table[1 if self.is_true else 0]) == 0: raise ValueError("Must set output inside block") self.ie.status = IfElse.OUT_IF_ELSE_BLOCKS class IfElse(object): """ This class is used to implement IfElse branch control function. IfElse contains two blocks, true_block and false_block. IfElse will put data satisfying True or False conditions into different blocks to run. Cond is a 2-D Tensor with shape [N, 1] and data type bool, representing the execution conditions of the corresponding part of the input data. Note: A new OP :ref:`api_fluid_layers_cond` is highly recommended instead of ``IfElse``. if the shape of parameter ``cond`` is [1]. OP :ref:`api_fluid_layers_cond` is easier to use and is called with less code but does the same thing as ``IfElse`` . IfElse OP is different from other OPs in usage, which may cause some users confusion. Here is a simple example to illustrate this OP. .. code-block:: python # The following code completes the function: subtract 10 from the data greater than 0 in x, add 10 to the data less than 0 in x, and sum all the data. import numpy as np import paddle.fluid as fluid x = fluid.layers.data(name='x', shape=[4, 1], dtype='float32', append_batch_size=False) y = fluid.layers.data(name='y', shape=[4, 1], dtype='float32', append_batch_size=False) x_d = np.array([[3], [1], [-2], [-3]]).astype(np.float32) y_d = np.zeros((4, 1)).astype(np.float32) # Compare the size of x, y pairs of elements, output cond, cond is shape [4, 1], data type bool 2-D tensor. # Based on the input data x_d, y_d, it can be inferred that the data in cond are [[true], [true], [false], [false]]. cond = fluid.layers.greater_than(x, y) # Unlike other common OPs, ie below returned by the OP is an IfElse OP object ie = fluid.layers.IfElse(cond) with ie.true_block(): # In this block, according to cond condition, the data corresponding to true dimension in X is obtained and subtracted by 10. out_1 = ie.input(x) out_1 = out_1 - 10 ie.output(out_1) with ie.false_block(): # In this block, according to cond condition, get the data of the corresponding condition in X as false dimension, and add 10 out_1 = ie.input(x) out_1 = out_1 + 10 ie.output(out_1) # According to cond condition, the data processed in the two blocks are merged. The output here is output, the type is List, and the element type in List is Variable. output = ie() # [array([[-7.], [-9.], [ 8.], [ 7.]], dtype=float32)] # Get the first Variable in the output List and add all elements. out = fluid.layers.reduce_sum(output[0]) exe = fluid.Executor(fluid.CPUPlace()) exe.run(fluid.default_startup_program()) res = exe.run(fluid.default_main_program(), feed={"x":x_d, "y":y_d}, fetch_list=[out]) print res # [array([-1.], dtype=float32)] Args: cond (Variable): cond is a 2-D Tensor with shape [N, 1] and data type bool, representing the corresponding execution conditions of N input data. The data type is bool. name(str, optional): The default value is None. Normally there is no need for user to set this property. For more information, please refer to :ref:`api_guide_Name` . Returns: Unlike other common OPs, the OP call returns an IfElse OP object (e.g. ie in the example), which branches the input data by calling the internal functions of the object ``true_block ()``, ``false_block ()``, ``input ()``, ``output ()``, and integrates the data processed by different branches as the overall output by calling the internal ``call ()`` function. The output type is a list, and the type of each element in the list is Variable. Internal Functions: The block is constructed by calling the ``with ie. true_block()`` function in the object, and the computational logic under condition true is put into the block. If no corresponding block is constructed, the input data in the corresponding conditional dimension is unchanged. The block is constructed by calling the ``with ie. false_block()`` function in the object, and the computational logic under condition false is put into the block. If no corresponding block is constructed, the input data in the corresponding conditional dimension is unchanged. ``Out = ie. input (x)`` will take out the data of the corresponding conditional dimension in X and put it into out, supporting the internal processing of multiple inputs in block. ``ie. output (out)`` writes the result to the output of the corresponding condition. There is a ``call ()`` function inside the object, that is, by calling ``output = ie ()``, all the outputs inside the block of False are fused as the whole output, the output type is a list, and the type of each element in the list is Variable. """ OUT_IF_ELSE_BLOCKS = 0 IN_IF_ELSE_TRUE_BLOCKS = 1 IN_IF_ELSE_FALSE_BLOCKS = 2 def __init__(self, cond, name=None): if not isinstance(cond, Variable): raise TypeError("cond must be a Variable") self.helper = LayerHelper('ifelse', name=name) self.cond = cond self.input_table = {} self.status = IfElse.OUT_IF_ELSE_BLOCKS self.conditional_true_block = ConditionalBlock(inputs=[self.cond]) self.conditional_false_block = ConditionalBlock(inputs=[self.cond]) self.output_table = ([], []) # (true_outs, false_outs) def input(self, x): if self.status == IfElse.OUT_IF_ELSE_BLOCKS: raise ValueError("input must in true/false blocks") if id(x) not in self.input_table: parent_block = self._parent_block() out_true = parent_block.create_var( name=unique_name.generate_with_ignorable_key('ifelse_input' + self.helper.name), dtype=x.dtype) out_false = parent_block.create_var( name=unique_name.generate_with_ignorable_key('ifelse_input' + self.helper.name), dtype=x.dtype) parent_block.append_op( type='split_lod_tensor', inputs={ 'X': x, 'Mask': self.cond, }, outputs={'OutTrue': out_true, 'OutFalse': out_false}, attrs={'level': 0}) self.input_table[id(x)] = (out_true, out_false) else: out_true, out_false = self.input_table[id(x)] if self.status == IfElse.IN_IF_ELSE_TRUE_BLOCKS: return out_true else: return out_false def _parent_block(self): current_block = self.helper.main_program.current_block() return self.helper.main_program.block(current_block.parent_idx) def true_block(self): return IfElseBlockGuard(True, self) def false_block(self): return IfElseBlockGuard(False, self) def output(self, *outs): if self.status == self.OUT_IF_ELSE_BLOCKS: raise ValueError("output can only be invoked in the sub-block") out_table = self.output_table[1 if self.status == self.IN_IF_ELSE_TRUE_BLOCKS else 0] parent_block = self._parent_block() for each_out in outs: if not isinstance(each_out, Variable): raise TypeError("Each output should be a variable") # create outside tensor outside_out = parent_block.create_var( name=unique_name.generate_with_ignorable_key("_".join( [self.helper.name, 'output'])), dtype=each_out.dtype) out_table.append(outside_out) # assign local var to outside assign(input=each_out, output=outside_out) def __call__(self): if self.status != self.OUT_IF_ELSE_BLOCKS: raise ValueError("IfElse::__call__ must be out of sub-block") false_len, true_len = list(map(len, self.output_table)) if false_len == 0 and true_len == 0: raise ValueError("Must invoke true_block/false_block before " "__call__") elif false_len != true_len and false_len != 0 and true_len != 0: raise ValueError("The output side must be same") elif false_len == 0 or true_len == 0: return self.output_table[0 if false_len != 0 else 1] # else none of false_len/true_len is zero # merge together rlist = [] for false_var, true_var in zip(*self.output_table): rlist.append( merge_lod_tensor( in_true=true_var, in_false=false_var, mask=self.cond, x=self.cond, level=0)) return rlist class DynamicRNN(object): """ **Note: the input of this class should be LoDTensor which holds the information of variable-length sequences. If the input is fixed-length Tensor, please use StaticRNN (fluid.layers.** :ref:`api_fluid_layers_StaticRNN` **) for better performance.** DynamicRNN can process a minibatch of variable-length sequences. The length of each sample can be different and is recorded in LoD. In DynamicRNN, an input sequence will be unfolded into time steps and users can define how to process each time step in :code:`block()` . The total number of time steps is determined by the longest sequence. DynamicRNN will not pad all sequences to the same length, instead it will sort the sequences internally by the sequence length in descending order. The input sequences will be shrinked because only sequences of which the length is larger than the time step will participate the remaining calculation. If defined :code:`drnn = DynamicRNN()`, then users can call :code:`drnn()` to obtain the result sequences. It is a LoDTensor gained by merging all time steps's output. When RNN's input sequence x meets :code:`x.lod_level == 1`, the output LoDTensor will have the same LoD with x. The result of :code:`drnn()` includes RNN's outputs of all time steps, users can call :ref:`api_fluid_layers_sequence_last_step` to extract the data of the last time step. Warning: Currently it is not supported to set :code:`is_sparse = True` of any layers defined within DynamicRNN's :code:`block` function. Args: name (str, optional): The default value is None. Normally there is no need for user to set this property. For more information, please refer to :ref:`api_guide_Name` . Examples: .. code-block:: python import paddle.fluid as fluid sentence = fluid.data(name='sentence', shape=[None, 32], dtype='float32', lod_level=1) encoder_proj = fluid.data(name='encoder_proj', shape=[None, 32], dtype='float32', lod_level=1) decoder_boot = fluid.data(name='boot', shape=[None, 10], dtype='float32') drnn = fluid.layers.DynamicRNN() with drnn.block(): # Set sentence as RNN's input, each time step processes a word from the sentence current_word = drnn.step_input(sentence) # Set encode_proj as RNN's static input encoder_word = drnn.static_input(encoder_proj) # Initialize memory with boot_memory, which need reorder according to RNN's input sequences memory = drnn.memory(init=decoder_boot, need_reorder=True) fc_1 = fluid.layers.fc(input=encoder_word, size=30) fc_2 = fluid.layers.fc(input=current_word, size=30) decoder_inputs = fc_1 + fc_2 hidden, _, _ = fluid.layers.gru_unit(input=decoder_inputs, hidden=memory, size=30) # Update memory with hidden drnn.update_memory(ex_mem=memory, new_mem=hidden) out = fluid.layers.fc(input=hidden, size=10, bias_attr=True, act='softmax') # Set hidden and out as RNN's outputs drnn.output(hidden, out) # Get RNN's result hidden, out = drnn() # Get RNN's result of the last time step last = fluid.layers.sequence_last_step(out) """ BEFORE_RNN = 0 IN_RNN = 1 AFTER_RNN = 2 def __init__(self, name=None): self.helper = LayerHelper('dynamic_rnn', name=name) self.status = DynamicRNN.BEFORE_RNN self.lod_rank_table = None self.max_seq_len = None self.step_idx = None self.zero_idx = None self.mem_dict = dict() self.output_array = [] self.outputs = [] self.cond = self.helper.create_variable_for_type_inference(dtype='bool') self.cond.stop_gradient = False self.while_op = While(self.cond) self.input_array = [] self.mem_link = [] def step_input(self, x, level=0): """ This function is used to set sequence x as DynamicRNN's input. The maximum sequence length in x determines the number of time steps the RNN unit will be executed. DynamicRNN can take multiple inputs. When all inputs' :code:`lod_level` are 1, all inputs should hold the same LoD. When :code:`x.lod_level >= 2` , the input sequence will be unfold along specified level, and the slice of each time step is a LoDTensor whose lod_level is :code:`x.lod_level - level - 1` . In this case, the specified LoD level of multiple inputs should be the same. - Case 1: .. code-block:: text # input, where Si is slice data of shape [1, N] level = 0 x.lod = [[2, 1, 3]] x.shape = [6, N] x.data = [[S0], [S0], [S1], [S2], [S2], [S2]] # output # step 0, time step data of 3 sequences out.lod = [[]] out.shape = [3, N] out.data = [[S2], [S0], [S1]] # step 1, time step data of 2 sequences out.lod = [[]] out.shape = [2, N] out.data = [[S2], [S0]] # step 2, time step data of 1 sequences out.lod = [[]] out.shape = [1, N] out.data = [[S2]] Args: x (Variable): The input LoDTensor which holds information of a minibatch of variable-length sequences and should meet :code:`x.lod_level >= 1` . When RNN has multiple inputs, the first dimension should match across all inputs, but other shape components may differ. Optional data types are: bool, float16, float32, float64, int8, int16, int32, int64, uint8. level (int, optional): The level of lod used to split steps. It should be in range :math:`[0, x.lod\_level)` . The default value is 0. Returns: Variable: The current time step in the input sequence. If there are :code:`num_sequences` \ sequences in x whose length is larger than :code:`step_idx` , the returned Variable \ will only hold the :code:`step_idx` -th time step of those `num_sequences` sequences. \ The data type is the same as input. If :code:`x.lod_level == 1` , the return value is \ a Tensor of shape :math:`\{num\_sequences, x.shape[1], ...\}` , or it will \ be a variable-length LoDTensor. Raises: ValueError: When :code:`step_input()` is called outside :code:`block()` . TypeError: When x is not a Variable. Examples: .. code-block:: python import paddle.fluid as fluid sentence = fluid.data(name='sentence', shape=[None, 1], dtype='int64', lod_level=1) embedding = fluid.layers.embedding(input=sentence, size=[65536, 32], is_sparse=True) drnn = fluid.layers.DynamicRNN() with drnn.block(): # Set embedding as RNN's input, each time step processes a word from the sentence word = drnn.step_input(embedding) # Initialize memory to a Tensor whose value is 0, shape=[batch_size, 200], # where batch_size is the number of sequences in embedding. memory = drnn.memory(shape=[200]) hidden = fluid.layers.fc(input=[word, memory], size=200, act='relu') # Update memory to hidden drnn.update_memory(ex_mem=memory, new_mem=hidden) # Set hidden as RNN's output drnn.output(hidden) # Get RNN's result rnn_output = drnn() """ self._assert_in_rnn_block_("step_input") if not isinstance(x, Variable): raise TypeError( "step_input() can only take a Variable as its input.") parent_block = self._parent_block_() if self.lod_rank_table is None: self.lod_rank_table = parent_block.create_var( name=unique_name.generate('lod_rank_table'), type=core.VarDesc.VarType.LOD_RANK_TABLE) self.lod_rank_table.stop_gradient = True parent_block.append_op( type='lod_rank_table', inputs={"X": x}, outputs={"Out": self.lod_rank_table}, attrs={"level": level}) self.max_seq_len = parent_block.create_var( name=unique_name.generate('dynamic_rnn_max_seq_len'), dtype='int64') self.max_seq_len.stop_gradient = False parent_block.append_op( type='max_sequence_len', inputs={'RankTable': self.lod_rank_table}, outputs={"Out": self.max_seq_len}) self.cond.stop_gradient = True parent_block.append_op( type='less_than', inputs={'X': self.step_idx, 'Y': self.max_seq_len}, outputs={'Out': self.cond}, attrs={'force_cpu': True}) input_array = parent_block.create_var( name=unique_name.generate('dynamic_rnn_input_array'), type=core.VarDesc.VarType.LOD_TENSOR_ARRAY, dtype=x.dtype) self.input_array.append((input_array, x.dtype)) parent_block.append_op( type='lod_tensor_to_array', inputs={'X': x, 'RankTable': self.lod_rank_table}, outputs={'Out': input_array}) return array_read(array=input_array, i=self.step_idx) def static_input(self, x): """ This function is used to set x as DynamicRNN's static input. It is optional. - Case 1, set static input with LoD .. code-block:: text # RNN's input is the same as the case listed in step_input # static input, where Si is slice data of shape [1, M] x.lod = [[3, 1, 2]] x.shape = [6, M] x.data = [[S0], [S0], [S0], [S1], [S2], [S2]] # step 0, batch data corresponding to the 3 input sequences out.lod = [[2, 3, 1]] out.shape = [6, M] out.data = [[S2], [S2], [S0], [S0], [S0], [S1]] # step 1, batch data corresponding to the 2 input sequences out.lod = [[2, 3]] out.shape = [5, M] out.data = [[S2], [S2], [S0], [S0], [S0]] # step 2, batch data corresponding to the 1 input sequences out.lod = [[2]] out.shape = [2, M] out.data = [[S2], [S2]] - Case 2, set static input without LoD .. code-block:: text # RNN's input is the same as the case listed in step_input # static input, where Si is slice data of shape [1, M] x.lod = [[]] x.shape = [3, M] x.data = [[S0], [S1], [S2]] # step 0, batch data corresponding to the 3 input sequences out.lod = [[]] out.shape = [3, M] out.data = [[S2], [S0], [S1]] # step 1, batch data corresponding to the 2 input sequences out.lod = [[]] out.shape = [2, M] out.data = [[S2], [S0]] # step 2, batch data corresponding to the 1 input sequences out.lod = [[]] out.shape = [1, M] out.data = [[S2]] Args: x (Variable): The static input LoDTensor which should hold the same number of sequences as RNN's input (the input LoDTensor set by :code:`step_input()` ). If the LoD is None, the input x will be treated as a minibatch with :code:`x.shape[0]` sequences of length 1. Optional data types are: bool, float16, float32, float64, int8, int16, int32, int64, uint8. Returns: Variable: The input LoDTensor after sorted and shrinked. If there are :code:`num_sequences` \ sequences in RNN's input LoDTensor whose length is larger than :code:`step_idx` , \ the static input Tensor will be sorted to the same order as RNN's input and \ will only retain data corresponding to those :code:`num_sequences` sequences. \ The data type is the same as input. If :code:`x.lod == None` , the return value is \ a Tensor of shape :math:`\{num\_sequences, x.shape[1], ...\}` , or it will \ be a variable-length LoDTensor. Raises: ValueError: When :code:`static_input()` is called outside :code:`block()` . TypeError: When x is not a Variable. RuntimeError: When :code:`static_input()` is called before :code:`step_input()` . Examples: .. code-block:: python import paddle.fluid as fluid sentence = fluid.data(name='sentence', shape=[None, 32], dtype='float32', lod_level=1) encoder_proj = fluid.data(name='encoder_proj', shape=[None, 32], dtype='float32', lod_level=1) decoder_boot = fluid.data(name='boot', shape=[None, 10], dtype='float32') drnn = fluid.layers.DynamicRNN() with drnn.block(): # Set sentence as RNN's input, each time step processes a word from the sentence current_word = drnn.step_input(sentence) # Set encode_proj as RNN's static input encoder_word = drnn.static_input(encoder_proj) # Initialize memory with boot_memory, which need reorder according to RNN's input sequences memory = drnn.memory(init=decoder_boot, need_reorder=True) fc_1 = fluid.layers.fc(input=encoder_word, size=30) fc_2 = fluid.layers.fc(input=current_word, size=30) decoder_inputs = fc_1 + fc_2 hidden, _, _ = fluid.layers.gru_unit(input=decoder_inputs, hidden=memory, size=30) # Update memory with hidden drnn.update_memory(ex_mem=memory, new_mem=hidden) out = fluid.layers.fc(input=hidden, size=10, bias_attr=True, act='softmax') # Set out as RNN's output drnn.output(out) # Get RNN's result rnn_output = drnn() """ self._assert_in_rnn_block_("static_input") if not isinstance(x, Variable): raise TypeError( "static_input() can only take a Variable as its input") if self.lod_rank_table is None: raise RuntimeError( "static_input() must be called after step_input().") parent_block = self._parent_block_() x_reordered = parent_block.create_var( name=unique_name.generate("dynamic_rnn_static_input_reordered"), type=core.VarDesc.VarType.LOD_TENSOR, dtype=x.dtype) parent_block.append_op( type='reorder_lod_tensor_by_rank', inputs={'X': [x], 'RankTable': [self.lod_rank_table]}, outputs={'Out': [x_reordered]}) return shrink_memory(x_reordered, self.step_idx, self.lod_rank_table) @signature_safe_contextmanager def block(self): """ The function is used to list the operations executed during each time step in RNN. The operation list will be executed :code:`max_sequence_len` times (where :code:`max_sequence_len` is the maximum length of RNN's input sequences). Raises: ValueError: When :code:`block()` is called multi-times. """ if self.status != DynamicRNN.BEFORE_RNN: raise ValueError("rnn.block() can only be invoke once") self.step_idx = fill_constant( shape=[1], dtype='int64', value=0, force_cpu=True) self.step_idx.stop_gradient = False self.status = DynamicRNN.IN_RNN with self.while_op.block(): yield increment(x=self.step_idx, value=1.0, in_place=True) for new_mem, mem_array in self.mem_link: array_write(x=new_mem, i=self.step_idx, array=mem_array) less_than( x=self.step_idx, y=self.max_seq_len, force_cpu=True, cond=self.cond) self.status = DynamicRNN.AFTER_RNN for each_array in self.output_array: self.outputs.append( array_to_lod_tensor( x=each_array, table=self.lod_rank_table)) def __call__(self, *args, **kwargs): """ This function is used to get the output sequneces of DynamicRNN. Args: None Returns: Variable or Variable list: RNN's output sequences. Raises: ValueError: When :code:`__call__()` is called before :code:`block()` . """ if self.status != DynamicRNN.AFTER_RNN: raise ValueError(("Output of the dynamic RNN can only be visited " "outside the rnn block.")) if len(self.outputs) == 1: return self.outputs[0] else: return self.outputs def memory(self, init=None, shape=None, value=0.0, need_reorder=False, dtype='float32'): """ Create a memory Variable for DynamicRNN to deliver data cross time steps. It can be initialized by an existing Tensor or a constant Tensor of given dtype and shape. Args: init (Variable, optional): LoDTensor used to initialize the memory. If init is not None, it should hold the same number of sequences as RNN's input (the input LoDTensor set by :code:`step_input()` ) and the memory will be initialized to it. If init's LoD is None, it will be treated as a minibatch with :code:`init.shape[0]` sequences of length 1. The default value is None. shape (list|tuple, optional): When init is None, it is used to specify the memory's shape. Note that the shape does not include the batch_size. If setting shape to :math:`\{D_1, D_2, ...\}` , the shape of memory Tensor will be :math:`\{batch\_size, D_1, D_2, ...\}` , where batch_size is determined by RNN's input sequences. The default value is None. value (float, optional): When init is None, it is used as initalized value of memory. The default value is 0.0. need_reorder (bool, optional): When init is not None, it determines whether the memory needs to reorder like the RNN's input sequeneces. It should be set to True when the initialized memory depends on the order of input samples. The default value is False. dtype (str|numpy.dtype, optional): When init is None, it is used to set the data type of memory. The default value is "float32". Optional data types are: "float32", "float64", "int32", "int64". Returns: Variable: The memory LoDTensor after shrinked. If there are :code:`num_sequences` \ sequences in RNN's input LoDTensor whose length is larger than :code:`step_idx` , \ the memory Tensor also need to be shrinked and will only retain data \ corresponding to those :code:`num_sequences` sequences. Raises: ValueError: When :code:`memory()` is called outside :code:`block()` . TypeError: When init is set and is not a Variable. ValueError: When :code:`memory()` is called before :code:`step_input()` . Examples: .. code-block:: python import paddle.fluid as fluid sentence = fluid.data(name='sentence', shape=[None, 32], dtype='float32', lod_level=1) boot_memory = fluid.data(name='boot', shape=[None, 10], dtype='float32') drnn = fluid.layers.DynamicRNN() with drnn.block(): # Set sentence as RNN's input, each time step processes a word from the sentence word = drnn.step_input(sentence) # Initialize memory with boot_memory, which need reorder according to RNN's input sequences memory = drnn.memory(init=boot_memory, need_reorder=True) hidden = fluid.layers.fc(input=[word, memory], size=10, act='tanh') # Update memory with hidden drnn.update_memory(ex_mem=memory, new_mem=hidden) # Set hidden as RNN's output drnn.output(hidden) # Get RNN's result rnn_output = drnn() Examples: .. code-block:: python import paddle.fluid as fluid sentence = fluid.data(name='sentence', shape=[None, 32], dtype='float32', lod_level=1) drnn = fluid.layers.DynamicRNN() with drnn.block(): # Set sentence as RNN's input, each time step processes a word from the sentence word = drnn.step_input(sentence) # Initialize memory to a Tensor whose value is 0, shape=[batch_size, 10], # where batch_size is the number of sequences in sentence. memory = drnn.memory(shape=[10], dtype='float32', value=0) hidden = fluid.layers.fc(input=[word, memory], size=10, act='tanh') # Update memory with hidden drnn.update_memory(ex_mem=memory, new_mem=hidden) # Set hidden as RNN's output drnn.output(hidden) # Get RNN's result rnn_output = drnn() """ self._assert_in_rnn_block_('memory') self._init_zero_idx_() if init is not None: if not isinstance(init, Variable): raise TypeError( "The input arg `init` of memory() must be a Variable") parent_block = self._parent_block_() init_tensor = init if need_reorder == True: if self.lod_rank_table is None: raise ValueError( 'If set need_reorder to True, make sure step_input be ' 'invoked before ' 'memory(init=init, need_reordered=True, ...).') init_reordered = parent_block.create_var( name=unique_name.generate('dynamic_rnn_mem_init_reordered'), type=core.VarDesc.VarType.LOD_TENSOR, dtype=init.dtype) parent_block.append_op( type='reorder_lod_tensor_by_rank', inputs={ 'X': [init_tensor], 'RankTable': [self.lod_rank_table] }, outputs={'Out': [init_reordered]}) init_tensor = init_reordered mem_array = parent_block.create_var( name=unique_name.generate('dynamic_rnn_mem_array'), type=core.VarDesc.VarType.LOD_TENSOR_ARRAY, dtype=init.dtype) parent_block.append_op( type='write_to_array', inputs={'X': init_tensor, 'I': self.zero_idx}, outputs={'Out': mem_array}) retv = array_read(array=mem_array, i=self.step_idx) retv = shrink_memory( x=retv, i=self.step_idx, table=self.lod_rank_table) self.mem_dict[retv.name] = mem_array return retv else: if len(self.input_array) == 0: raise ValueError( "step_input should be invoked before memory(shape=..., value=...)" ) parent_block = self._parent_block_() init = parent_block.create_var( name=unique_name.generate('mem_init'), dtype=dtype) arr, dtype = self.input_array[0] in0 = parent_block.create_var( name=unique_name.generate('in0'), dtype=dtype) parent_block.append_op( type='read_from_array', inputs={'X': [arr], 'I': [self.zero_idx]}, outputs={'Out': [in0]}) parent_block.append_op( type='fill_constant_batch_size_like', inputs={'Input': [in0]}, outputs={'Out': [init]}, attrs={ 'shape': [-1] + shape, 'value': float(value), 'dtype': init.dtype }) return self.memory(init=init) def update_memory(self, ex_mem, new_mem): """ Update the memory which need to be delivered across time steps. Args: ex_mem (Variable): The memory data of previous time step. new_mem (Variable): The new memory data produced in current time step. The shape and data type of ex_mem and new_mem should be the same. Returns: None Raises: ValueError: When :code:`update_memory()` is called outside :code:`block()` . TypeError: When :code:`ex_mem` or :code:`new_mem` is not a Variable. ValueError: When :code:`ex_mem` is defined by :code:`memory()` . ValueError: When :code:`update_memory()` is called before :code:`step_input()` . """ self._assert_in_rnn_block_('update_memory') if not isinstance(ex_mem, Variable): raise TypeError("The input arg `ex_mem` of update_memory() must " "be a Variable") if not isinstance(new_mem, Variable): raise TypeError("The input arg `new_mem` of update_memory() must " "be a Variable") mem_array = self.mem_dict.get(ex_mem.name, None) if mem_array is None: raise ValueError("Please invoke memory before update_memory") if self.lod_rank_table is None: raise ValueError("Please invoke step_input before update_memory") self.mem_link.append((new_mem, mem_array)) def output(self, *outputs): """ This function is used to set :code:`outputs` as RNN's output. Args: *outputs (Variable ...): The output Tensor. DynamicRNN can mark multiple Variables as its output. Returns: None Raises: ValueError: When :code:`output()` is called outside :code:`block()` . """ self._assert_in_rnn_block_('output') parent_block = self._parent_block_() for each in outputs: outside_array = parent_block.create_var( name=unique_name.generate_with_ignorable_key("_".join( [self.helper.name, "output_array", each.name])), type=core.VarDesc.VarType.LOD_TENSOR_ARRAY, dtype=each.dtype) array_write(x=each, i=self.step_idx, array=outside_array) self.output_array.append(outside_array) def _init_zero_idx_(self): if self.zero_idx is None: parent_block = self._parent_block_() self.zero_idx = parent_block.create_var( name=unique_name.generate('zero_idx'), dtype='int64') parent_block.append_op( type='fill_constant', inputs={}, outputs={'Out': [self.zero_idx]}, attrs={ 'shape': [1], 'dtype': self.zero_idx.dtype, 'value': float(0), 'force_cpu': True }) def _parent_block_(self): prog = self.helper.main_program parent_idx = prog.current_block().parent_idx assert parent_idx >= 0 parent_block = prog.block(parent_idx) return parent_block def _assert_in_rnn_block_(self, method): if self.status != DynamicRNN.IN_RNN: raise ValueError("{0} can only be invoked inside rnn block.".format( method)) def switch_case(branch_index, branch_fns, default=None, name=None): ''' This operator is like a C++ switch/case statement. Args: branch_index(Variable): A Tensor with shape [1] to specify which branch to execute. The data type is ``int32``, ``int64`` or ``uint8``. branch_fns(dict|list|tuple): If it's a list or tuple, the elements in it could be pairs of (int, callable) or simple callables whose actual index will be used as the index of callable. If it's a dict, its key is a python integer and the value is a callable. All callables return the same structure of Tensors. default(callable, optional): Callable that returns a structure of Tensors. name(str, optional): The default value is None. Normally there is no need for user to set this property. For more information, please refer to :ref:`api_guide_Name`. Returns: Variable|list(Variable): Tensors returned by the callable specified by ``branch_index`` in ``branch_fns``, or Tensors returned by ``default`` if ``default`` is not None and no index matches in ``branch_fns``, or Tensors returned by the callable with the max index in ``branch_fns`` if ``default`` is None and no index matches in ``branch_fns``. Raises: TypeError: If the type of ``branch_index`` is not Variable. TypeError: If the data type of ``branch_index`` is not ``int32``, ``int64`` or ``uint8``. TypeError: If the type of ``branch_fns`` is not dict, list or tuple. TypeError: If the elements of ``branch_fns`` is not 2-tuple. TypeError: If the first element of 2-tuple in ``branch_fns`` is not integer. ValueError: If the first element of 2-tuple in ``branch_fns`` is not unique. TypeError: If the second element of 2-tuple in ``branch_fns`` is not callable. TypeError: If ``default`` is not None but it is not callable. Examples: .. code-block:: python import paddle.fluid as fluid import paddle.fluid.layers as layers def fn_1(): return layers.fill_constant(shape=[1, 2], dtype='float32', value=1) def fn_2(): return layers.fill_constant(shape=[2, 2], dtype='int32', value=2) def fn_3(): return layers.fill_constant(shape=[3], dtype='int32', value=3) main_program = fluid.default_startup_program() startup_program = fluid.default_main_program() with fluid.program_guard(main_program, startup_program): index_1 = layers.fill_constant(shape=[1], dtype='int32', value=1) index_2 = layers.fill_constant(shape=[1], dtype='int32', value=2) out_1 = layers.switch_case( branch_index=index_1, branch_fns={1: fn_1, 2: fn_2}, default=fn_3) out_2 = layers.switch_case( branch_index=index_2, branch_fns=[(1, fn_1), (2, fn_2)], default=fn_3) # Argument default is None and no index matches. fn_3 will be called because of the max index 7. out_3 = layers.switch_case( branch_index=index_2, branch_fns=[(0, fn_1), (4, fn_2), (7, fn_3)]) exe = fluid.Executor(fluid.CPUPlace()) res_1, res_2, res_3 = exe.run(main_program, fetch_list=[out_1, out_2, out_3]) print(res_1) # [[1. 1.]] print(res_2) # [[2 2] [2 2]] print(res_3) # [3 3 3] ''' helper = LayerHelper('switch_case', **locals()) def _check_args(branch_index, branch_fns, default): if not isinstance(branch_index, Variable): raise TypeError( _error_message("The type", "branch_index", "switch_case", "Variable", type(branch_index))) if convert_dtype(branch_index.dtype) not in ["uint8", "int32", "int64"]: raise TypeError( _error_message("The data type", "branch_index", "switch_case", "uint8, int32 or int64", convert_dtype(branch_index.dtype))) if convert_dtype(branch_index.dtype) != "int64": branch_index = cast(branch_index, "int64") if not isinstance(branch_fns, (list, tuple, dict)): raise TypeError( _error_message("The type", "branch_fns", "switch_case", "dict, tuple or list", type(branch_fns))) branch_fns = branch_fns.items() if isinstance(branch_fns, dict) else branch_fns branch_fns = list(enumerate(branch_fns)) if all( callable(fn) for fn in branch_fns) else branch_fns keys_of_fns = [] for index_fn_pair in branch_fns: if not isinstance(index_fn_pair, tuple): raise TypeError( _error_message("The elements' type", "branch_fns", "switch_case", "tuple", type(branch_fns))) if len(index_fn_pair) != 2: raise TypeError( _error_message("The tuple's size", "branch_fns", "switch_case", "2", str(len(index_fn_pair)) + "-tuple")) key, fn = index_fn_pair if not isinstance(key, int): raise TypeError( _error_message("The key's type", "branch_fns", "switch_case", "int", type(key))) if key in keys_of_fns: raise ValueError( "The key in 'branch_fns' must be unique, but '{}' appears more than once.". format(key)) else: keys_of_fns.append(key) if not callable(fn): raise TypeError( _error_message("The type of function for key {}".format( key), "branch_fns", "switch_case", "callable", type( fn))) if default is None: default = sorted(branch_fns)[-1][1] branch_fns = sorted(branch_fns)[:-1] elif not callable(default): raise TypeError("The default in Op(case) must be callable.") pred_fn_pairs = [] for index, fn in branch_fns: new_index = fill_constant(shape=[1], dtype="int64", value=index) pred = equal(branch_index, new_index) pred_fn_pairs.append((pred, fn)) return pred_fn_pairs, default pred_fn_pairs, default = _check_args(branch_index, branch_fns, default) false_fn = default for pred, true_fn in pred_fn_pairs: false_fn = partial(cond, pred=pred, true_fn=true_fn, false_fn=false_fn) final_fn = false_fn return final_fn() @templatedoc() def reorder_lod_tensor_by_rank(x, rank_table): """ ${comment} Args: x(${x_type}): ${x_comment}. rank_table(${rank_table_type}): ${rank_table_comment}. Returns: out(${out_type}): ${out_comment}. Examples: .. code-block:: python import paddle.fluid as fluid data_desc = (['input', [9], 0], ['ref', [5], 1]) data = fluid.layers.data(name=data_desc[0][0], shape=data_desc[0][1]) rank_data = fluid.layers.data(name=data_desc[1][0], shape=data_desc[1][1]) table = fluid.layers.control_flow.lod_rank_table(rank_data) new_data = fluid.layers.reorder_lod_tensor_by_rank( x=data, rank_table=table) """ helper = LayerHelper('reorder_lod_tensor_by_rank', **locals()) helper.is_instance('x', Variable) helper.is_instance('rank_table', Variable) out = helper.create_variable_for_type_inference(dtype=x.dtype) helper.append_op( type='reorder_lod_tensor_by_rank', inputs={'X': [x], 'RankTable': [rank_table]}, outputs={'Out': [out]}) return out def is_empty(x, cond=None): """ Test whether a Variable is empty. Args: x (Variable): The Variable to be tested. cond (Variable, optional): Output parameter. Default: None. If this parameter is given, it saves the test result of given 'x'. Returns: Variable: A bool scalar. True if 'x' is an empty Variable. Raises: TypeError: If input cond is not a variable, or cond's dtype is not bool. Examples: .. code-block:: python import paddle.fluid as fluid input = fluid.layers.data(name="input", shape=[4, 32, 32], dtype="float32") res = fluid.layers.is_empty(x=input) # or: # fluid.layers.is_empty(x=input, cond=res) """ helper = LayerHelper("is_empty", **locals()) if cond is None: cond = helper.create_variable_for_type_inference(dtype='bool') cond.stop_gradient = True elif not isinstance(cond, Variable): raise TypeError("cond takes a variable") elif cond.dtype != 'bool': raise TypeError("The data type of cond must be bool") helper.append_op( type='is_empty', inputs={'X': [x]}, outputs={'Out': [cond]}) return cond