# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import unittest import numpy as np import paddle import paddle.fluid as fluid import paddle.fluid.layers as layers import paddle.fluid.core as core import gradient_checker from decorator_helper import prog_scope paddle.enable_static() class TestMulGradCheck(unittest.TestCase): @prog_scope() def func(self, place): prog = fluid.Program() with fluid.program_guard(prog): x = layers.create_parameter(dtype="float64", shape=[2, 8], name='x') y = layers.create_parameter(dtype="float64", shape=[8, 4], name='y') z = layers.mul(x=x, y=y) gradient_checker.grad_check([x, y], z, place=place) def test_grad(self): places = [fluid.CPUPlace()] if core.is_compiled_with_cuda(): places.append(fluid.CUDAPlace(0)) for p in places: self.func(p) class TestMulDoubleGradCheck(unittest.TestCase): @prog_scope() def func(self, place): # the shape of input variable should be clearly specified, not inlcude -1. x_shape = [7, 11] y_shape = [11, 9] eps = 0.005 dtype = np.float64 x = layers.data('x', x_shape, False, dtype) x.persistable = True y = layers.data('y', y_shape, False, dtype) y.persistable = True out = layers.mul(x, y) x_arr = np.random.uniform(-1, 1, x_shape).astype(dtype) y_arr = np.random.uniform(-1, 1, y_shape).astype(dtype) gradient_checker.double_grad_check( [x, y], out, x_init=[x_arr, y_arr], place=place, eps=eps ) def test_grad(self): places = [fluid.CPUPlace()] if core.is_compiled_with_cuda(): places.append(fluid.CUDAPlace(0)) for p in places: self.func(p) class TestMatmulDoubleGradCheck(unittest.TestCase): def setUp(self): self.init_test() def init_test(self): self.x_shape = [2] self.y_shape = [2] self.transpose_x = False self.transpose_y = False @prog_scope() def func(self, place): eps = 0.005 dtype = np.float64 typename = "float64" x = layers.create_parameter( dtype=typename, shape=self.x_shape, name='x' ) y = layers.create_parameter( dtype=typename, shape=self.y_shape, name='y' ) out = layers.matmul( x, y, self.transpose_x, self.transpose_y, name='out' ) x_arr = np.random.uniform(-1, 1, self.x_shape).astype(dtype) y_arr = np.random.uniform(-1, 1, self.y_shape).astype(dtype) gradient_checker.double_grad_check( [x, y], out, x_init=[x_arr, y_arr], place=place, eps=eps ) def test_grad(self): places = [fluid.CPUPlace()] if core.is_compiled_with_cuda(): places.append(fluid.CUDAPlace(0)) for p in places: self.func(p) def TestMatmulDoubleGradCheckCase1(TestMatmulDoubleGradCheck): def init_test(self): self.x_shape = [2, 3] self.y_shape = [3, 2] self.transpose_x = True self.transpose_y = True def TestMatmulDoubleGradCheckCase2(TestMatmulDoubleGradCheck): def init_test(self): self.x_shape = [2, 4, 3] self.y_shape = [2, 4, 5] self.transpose_x = True self.transpose_y = False def TestMatmulDoubleGradCheckCase3(TestMatmulDoubleGradCheck): def init_test(self): self.x_shape = [2, 3, 4, 5] self.y_shape = [2, 3, 3, 5] self.transpose_x = False self.transpose_y = True def TestMatmulDoubleGradCheckCase4(TestMatmulDoubleGradCheck): def init_test(self): self.x_shape = [2, 3, 4] self.y_shape = [4, 3] self.transpose_x = False self.transpose_y = False if __name__ == "__main__": unittest.main()