/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. */ #pragma once #include "paddle/framework/op_registry.h" #include "paddle/operators/math/lstm_compute.h" #include "paddle/operators/math/math_function.h" #include "paddle/operators/math/sequence2batch.h" namespace paddle { namespace operators { using LoDTensor = framework::LoDTensor; using Tensor = framework::Tensor; template using EigenMatrix = framework::EigenMatrix; template class LSTMKernel : public framework::OpKernel { public: void Compute(const framework::ExecutionContext& ctx) const override { auto* input = ctx.Input("Input"); auto* weight = ctx.Input("Weight"); auto* bias = ctx.Input("Bias"); auto* hidden_t0 = ctx.Input("H0"); auto* cell_t0 = ctx.Input("C0"); auto* batch_gate = ctx.Output("BatchGate"); batch_gate->mutable_data(ctx.GetPlace()); auto* hidden_out = ctx.Output("Hidden"); hidden_out->mutable_data(ctx.GetPlace()); auto* cell_out = ctx.Output("Cell"); cell_out->mutable_data(ctx.GetPlace()); bool is_reverse = ctx.Attr("is_reverse"); math::LoDTensor2BatchFunctor to_batch; auto& device_ctx = ctx.device_context(); to_batch(device_ctx, *input, *batch_gate, true, is_reverse); auto in_dims = input->dims(); int frame_size = static_cast(in_dims[1] / 4); framework::DDim dims({in_dims[0], frame_size}); if (bias) { Eigen::array extents({{1, 4 * frame_size}}); Eigen::array offsets({{0, 0}}); auto b = EigenMatrix::From(*bias); auto gate = EigenMatrix::From(*batch_gate); gate.device(ctx.GetEigenDevice()) = gate + b.slice(offsets, extents) .reshape(Eigen::array({{1, frame_size * 4}})) .broadcast( Eigen::array({{static_cast(in_dims[0]), 1}})); } math::LstmMetaValue lstm_value; if (bias) { T* bias_data = const_cast(bias->data()); // the code style in LstmMetaValue will be updated later. lstm_value.checkIg = bias_data + 4 * frame_size; lstm_value.checkFg = lstm_value.checkIg + frame_size; lstm_value.checkOg = lstm_value.checkFg + frame_size; } else { lstm_value.checkIg = nullptr; lstm_value.checkFg = nullptr; lstm_value.checkOg = nullptr; } lstm_value.prevStateValue = nullptr; Tensor ordered_c0; if (cell_t0) { math::CopyMatrixRowsFunctor row_shuffle; const size_t* order = batch_gate->lod()[2].data(); row_shuffle(device_ctx, *cell_t0, order, ordered_c0, true); lstm_value.prevStateValue = ordered_c0.data(); } // Use the local variable as here. LoDTensor batch_hidden, batch_cell; auto* batch_cell_pre_act = ctx.Output("BatchCellPreAct"); batch_hidden.mutable_data(dims, ctx.GetPlace()); batch_cell.mutable_data(dims, ctx.GetPlace()); batch_cell_pre_act->mutable_data(dims, ctx.GetPlace()); auto batch_starts = batch_gate->lod()[0]; size_t num_batch = batch_starts.size() - 1; auto gate_act = ctx.Attr("gate_activation"); auto cell_act = ctx.Attr("cell_activation"); auto cand_act = ctx.Attr("candidate_activation"); for (size_t n = 0; n < num_batch; n++) { int bstart = static_cast(batch_starts[n]); int bend = static_cast(batch_starts[n + 1]); Tensor gate_t = batch_gate->Slice(bstart, bend); Tensor out_t = batch_hidden.Slice(bstart, bend); Tensor cell_t = batch_cell.Slice(bstart, bend); Tensor cell_pre_act_t = batch_cell_pre_act->Slice(bstart, bend); int cur_batch_size = bend - bstart; if (n > 0) { int pre_h_start = static_cast(batch_starts[n - 1]); int pre_h_end = pre_h_start + cur_batch_size; auto pre_hidden_t = batch_hidden.Slice(pre_h_start, pre_h_end); math::matmul(device_ctx, pre_hidden_t, false, *weight, false, static_cast(1.0), &gate_t, static_cast(1.0)); } else if (hidden_t0) { math::CopyMatrixRowsFunctor row_shuffle; Tensor ordered_h0; const size_t* order = batch_gate->lod()[2].data(); row_shuffle(device_ctx, *hidden_t0, order, ordered_h0, true); math::matmul(device_ctx, ordered_h0, false, *weight, false, static_cast(1.0), &gate_t, static_cast(1.0)); } lstm_value.gateValue = gate_t.data(); lstm_value.outputValue = out_t.data(); lstm_value.stateValue = cell_t.data(); lstm_value.stateActiveValue = cell_pre_act_t.data(); math::LstmUnitFunctor::compute(device_ctx, lstm_value, frame_size, cur_batch_size, gate_act, cell_act, cand_act); lstm_value.prevStateValue = lstm_value.stateValue; } math::Batch2LoDTensorFunctor to_seq; batch_hidden.set_lod(batch_gate->lod()); // restore the output hidden in LoDTensor from the batch hidden to_seq(device_ctx, batch_hidden, *hidden_out); batch_cell.set_lod(batch_gate->lod()); // restore the output cell state in LoDTensor from the batch cell to_seq(device_ctx, batch_cell, *cell_out); } }; template class LSTMGradKernel : public framework::OpKernel { public: void Compute(const framework::ExecutionContext& ctx) const override { auto* input = ctx.Input("Input"); auto* weight = ctx.Input("Weight"); auto* bias = ctx.Input("Bias"); auto* hidden_out = ctx.Input("Hidden"); auto* cell_out = ctx.Input("Cell"); auto* batch_gate = ctx.Input("BatchGate"); auto* batch_cell_pre_act = ctx.Input("BatchCellPreAct"); auto* hidden_g = ctx.Input(framework::GradVarName("Hidden")); auto* in_g = ctx.Output(framework::GradVarName("Input")); auto* weight_g = ctx.Output(framework::GradVarName("Weight")); auto* bias_g = ctx.Output(framework::GradVarName("Bias")); auto* h0 = ctx.Input("H0"); auto* c0 = ctx.Input("C0"); auto* h0_g = ctx.Output(framework::GradVarName("H0")); auto* c0_g = ctx.Output(framework::GradVarName("C0")); auto& device_ctx = ctx.device_context(); math::SetConstant zero; if (weight_g) { weight_g->mutable_data(ctx.GetPlace()); zero(device_ctx, weight_g, static_cast(0.0)); } Tensor ordered_h0, ordered_c0, ordered_h0_g, ordered_c0_g; math::CopyMatrixRowsFunctor row_shuffle; const size_t* order = batch_gate->lod()[2].data(); if (c0) { ordered_c0.mutable_data(c0->dims(), ctx.GetPlace()); row_shuffle(device_ctx, *c0, order, ordered_c0, true); } auto in_dims = input->dims(); auto out_dims = hidden_g->dims(); int frame_size = static_cast(in_dims[1] / 4); PADDLE_ENFORCE_EQ(frame_size, out_dims[1]); math::LstmMetaValue lstm_value; if (bias) { T* bias_data = const_cast(bias->data()); lstm_value.checkIg = bias_data + 4 * frame_size; lstm_value.checkFg = lstm_value.checkIg + frame_size; lstm_value.checkOg = lstm_value.checkFg + frame_size; } else { lstm_value.checkIg = nullptr; lstm_value.checkFg = nullptr; lstm_value.checkOg = nullptr; } math::LstmMetaGrad lstm_grad; if (bias && bias_g) { T* bias_g_data = const_cast(bias_g->mutable_data(ctx.GetPlace())); zero(device_ctx, bias_g, static_cast(0.0)); lstm_grad.checkIgGrad = bias_g_data + 4 * frame_size; lstm_grad.checkFgGrad = lstm_grad.checkIgGrad + frame_size; lstm_grad.checkOgGrad = lstm_grad.checkFgGrad + frame_size; } else { lstm_grad.checkIgGrad = nullptr; lstm_grad.checkFgGrad = nullptr; lstm_grad.checkOgGrad = nullptr; } math::LoDTensor2BatchFunctor to_batch; // use the local variable as here. LoDTensor batch_hidden; batch_hidden.mutable_data(out_dims, ctx.GetPlace()); batch_hidden.set_lod(batch_gate->lod()); to_batch(device_ctx, *hidden_out, batch_hidden, false); LoDTensor batch_hidden_g; batch_hidden_g.mutable_data(out_dims, ctx.GetPlace()); batch_hidden_g.set_lod(batch_gate->lod()); to_batch(device_ctx, *hidden_g, batch_hidden_g, false); LoDTensor batch_cell; batch_cell.mutable_data(out_dims, ctx.GetPlace()); batch_cell.set_lod(batch_gate->lod()); to_batch(device_ctx, *cell_out, batch_cell, false); LoDTensor batch_cell_g; batch_cell_g.mutable_data(out_dims, ctx.GetPlace()); batch_cell_g.set_lod(batch_gate->lod()); // TODO(qingqing) support the case output cell has gradient. // to_batch(device_ctx, *cell_g, batch_cell_g, false); zero(device_ctx, &batch_cell_g, static_cast(0.0)); LoDTensor batch_gate_g; batch_gate_g.mutable_data(batch_gate->dims(), ctx.GetPlace()); batch_gate_g.set_lod(batch_gate->lod()); auto gate_act = ctx.Attr("gate_activation"); auto cell_act = ctx.Attr("cell_activation"); auto cand_act = ctx.Attr("candidate_activation"); auto batch_starts = batch_gate->lod()[0]; size_t num_batch = batch_starts.size() - 1; for (int n = static_cast(num_batch) - 1; n >= 0; n--) { int bstart = static_cast(batch_starts[n]); int bend = static_cast(batch_starts[n + 1]); Tensor gate = batch_gate->Slice(bstart, bend); Tensor cell = batch_cell.Slice(bstart, bend); Tensor cell_pre_act = batch_cell_pre_act->Slice(bstart, bend); lstm_value.gateValue = gate.data(); lstm_value.stateValue = cell.data(); lstm_value.stateActiveValue = cell_pre_act.data(); Tensor out_g = batch_hidden_g.Slice(bstart, bend); Tensor gate_g = batch_gate_g.Slice(bstart, bend); Tensor cell_g = batch_cell_g.Slice(bstart, bend); lstm_grad.stateGrad = cell_g.data(); lstm_grad.gateGrad = gate_g.data(); lstm_grad.outputGrad = out_g.data(); if (n > 0) { int bstart_pre = static_cast(batch_starts[n - 1]); Tensor cell_pre = batch_cell.Slice(bstart_pre, bstart); Tensor cell_pre_g = batch_cell_g.Slice(bstart_pre, bstart); lstm_value.prevStateValue = cell_pre.data(); lstm_grad.prevStateGrad = cell_pre_g.data(); } else { if (c0) { lstm_value.prevStateValue = ordered_c0.data(); } else { lstm_value.prevStateValue = nullptr; } if (c0 && c0_g) { ordered_c0_g.mutable_data(c0_g->dims(), ctx.GetPlace()); lstm_grad.prevStateGrad = ordered_c0_g.data(); } else { lstm_grad.prevStateGrad = nullptr; } } int cur_batch_size = bend - bstart; math::LstmUnitGradFunctor::compute( device_ctx, lstm_value, lstm_grad, frame_size, cur_batch_size, gate_act, cell_act, cand_act); if (n > 0) { int pre_h_start = static_cast(batch_starts[n - 1]); int pre_h_end = pre_h_start + cur_batch_size; auto pre_hidden_g = batch_hidden_g.Slice(pre_h_start, pre_h_end); math::matmul(device_ctx, gate_g, false, *weight, true, static_cast(1.0), &pre_hidden_g, static_cast(1.0)); if (weight_g) { /* backward weight */ auto pre_hidden = batch_hidden.Slice(pre_h_start, pre_h_end); math::matmul(device_ctx, pre_hidden, true, gate_g, false, static_cast(1.0), weight_g, static_cast(1.0)); } } else { if (h0 && weight_g) { ordered_h0.mutable_data(h0->dims(), ctx.GetPlace()); row_shuffle(device_ctx, *h0, order, ordered_h0, true); math::matmul(device_ctx, ordered_h0, true, gate_g, false, static_cast(1.0), weight_g, static_cast(1.0)); } if (h0 && h0_g) { ordered_h0_g.mutable_data(h0_g->dims(), ctx.GetPlace()); math::matmul(device_ctx, gate_g, false, *weight, true, static_cast(1.0), &ordered_h0_g, static_cast(0.0)); } } } math::Batch2LoDTensorFunctor to_seq; if (in_g) { /* backward data */ in_g->mutable_data(ctx.GetPlace()); to_seq(device_ctx, batch_gate_g, *in_g); } if (bias && bias_g) { /* backward bias */ int m = static_cast(batch_gate_g.dims()[0]); int n = static_cast(batch_gate_g.dims()[1]); Tensor ones; ones.mutable_data({m}, ctx.GetPlace()); math::SetConstant set; set(device_ctx, &ones, static_cast(1.0)); math::gemv(device_ctx, true, m, n, 1., batch_gate_g.data(), ones.data(), 0., bias_g->data()); } if (h0 && h0_g) { h0_g->mutable_data(ctx.GetPlace()); row_shuffle(device_ctx, ordered_h0_g, order, *h0_g, false); } if (c0 && c0_g) { c0_g->mutable_data(ctx.GetPlace()); row_shuffle(device_ctx, ordered_c0_g, order, *c0_g, false); } } }; } // namespace operators } // namespace paddle