// Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved. // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. #pragma once #include #include #include "paddle/fluid/imperative/layer.h" #include "paddle/fluid/imperative/prepared_operator.h" #include "paddle/fluid/imperative/tracer.h" #include "paddle/fluid/framework/op_registry.h" #include "paddle/fluid/framework/type_defs.h" #include "paddle/fluid/operators/py_layer_op.h" namespace paddle { namespace imperative { namespace py = ::pybind11; bool RequiredGrad(const NameVarBaseMap& ins, const NameVarBaseMap& outs) { for (const auto& name_pair : ins) { for (const auto& var_base : name_pair.second) { if (!var_base->OverridedStopGradient()) { for (const auto& pair : outs) { for (const auto& var : pair.second) { if (var) { var->SetOverridedStopGradient(false); SetForwardDataTypeOfGradVar(var); VLOG(3) << "Set output: " << var->Name() << "'s OverridedStopGradient as " << var->OverridedStopGradient(); } } } return true; } } } return false; } std::shared_ptr CreateGradOpNode( const std::string& type, const NameVarBaseMap& ins, const NameVarBaseMap& outs, const framework::AttributeMap& attrs, const platform::Place& place, const std::map& inplace_map, const std::shared_ptr& py_context) { operators::PyLayerGradOpMaker maker( type, ins, outs, attrs, inplace_map); maker.SetPyLayerContext(py_context); auto grad_node = maker(); if (grad_node && !grad_node->empty()) { for (auto& grad_op : *grad_node) { grad_op.SetId(OpBase::GenerateUniqueId()); grad_op.SetPlace(place); ClearNoNeedBufferInputs(&grad_op); } return grad_node; } else { return nullptr; } } py::object PyLayerApply(const platform::Place& place, const py::handle& cls, const py::args args, const py::kwargs kwargs) { py::gil_scoped_acquire guard; auto bk_function = cls.attr("_backward_function"); auto context = bk_function(); auto forward = cls.attr("forward"); auto result_forward = forward(context, *args, **kwargs); std::shared_ptr py_layer_ctx = std::make_shared(context.ptr()); // make inputs to varbase std::vector> input_vars; // process args,`input_vars` only collect `imperative::VarBase` if (!args.empty()) { for (auto ptr = args.begin(); ptr != args.end(); ptr++) { // Only collect Tensor type in 'args' and pass them to backward. Ignore // other types of input temporarily. if (py::isinstance(*ptr)) { try { auto a = ptr->cast>(); input_vars.push_back(a); } catch (py::cast_error& err) { PADDLE_THROW(platform::errors::InvalidArgument( "The `PyLayer.forward` function contains invalid argument, the " "`%s` type argument can not be cast into `Tensor`.", ptr->ptr()->ob_type->tp_name)); } } } } // process kwargs, only collect `imperative::VarBase` if (!kwargs.empty()) { for (auto ptr = kwargs.begin(); ptr != kwargs.end(); ptr++) { // Only collect Tensor type in 'kwargs' and pass them to backward. // Ignore other types of input temporarily. if (py::isinstance(*ptr->second)) { try { auto a = ptr->second.cast>(); input_vars.push_back(a); } catch (py::cast_error&) { PADDLE_THROW(platform::errors::InvalidArgument( "The `PyLayer.forward` function contains invalid argument, the " "`%s` type argument can not be cast into `Tensor`.", ptr->second.ptr()->ob_type->tp_name)); } } } } NameVarBaseMap ins = {{"X", input_vars}}; std::vector> output_vars; if (PyTuple_Check(result_forward.ptr()) || PyList_Check(result_forward.ptr())) { auto tuple_result = result_forward.cast(); for (size_t i = 0; i < tuple_result.size(); i++) { // Only collect Tensor type of output and pass them to backward. // Ignore other types of input temporarily. if (py::isinstance(tuple_result[i])) { try { auto temp_out = tuple_result[i].cast>(); output_vars.push_back(temp_out); } catch (py::cast_error&) { PADDLE_THROW(platform::errors::InvalidArgument( "The `PyLayer.forward` function returns invalid argument, the " "`%s` type argument can not be cast into `Tensor`.", tuple_result[i].ptr()->ob_type->tp_name)); } } } } else { // Only collect Tensor type of output and pass them to backward. // Ignore other types of input temporarily. if (py::isinstance(result_forward)) { try { auto temp_out = result_forward.cast>(); output_vars.push_back(temp_out); } catch (py::cast_error&) { PADDLE_THROW(platform::errors::InvalidArgument( "The `PyLayer.forward` function returns invalid argument, the `%s` " "type argument can not be cast into `Tensor`.", result_forward.ptr()->ob_type->tp_name)); } } } if (output_vars.size() == 0) { PADDLE_THROW(platform::errors::InvalidArgument( "At least one output of `PyLayer.forward` is a `Tensor`.")); } NameVarBaseMap outs = {{"Out", output_vars}}; if (RequiredGrad(ins, outs)) { std::map inplace_map{}; bool if_inplace = false; for (auto temp_ins : input_vars) { if (if_inplace) { break; } for (auto temp_outs : output_vars) { if (temp_ins->Name() == temp_outs->Name()) { if_inplace = true; break; } } } if (if_inplace) { // when pylayer forward is inplace strategy, check whether tensor is leaf for (auto& t : input_vars) { PADDLE_ENFORCE_EQ(t->IsLeaf() && !t->OverridedStopGradient(), false, platform::errors::InvalidArgument( "Leaf Var (%s) that doesn't stop gradient can't " "use inplace strategy.", t->Name())); } inplace_map["X"] = "Out"; } CreateGradOpNode("py_layer", ins, outs, {{}}, place, inplace_map, py_layer_ctx); } else { VLOG(3) << "No Grad to track for Op: py_layer_op"; } return result_forward; } } // namespace imperative } // namespace paddle