// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved. // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. #include "paddle/phi/kernels/kthvalue_kernel.h" #include "paddle/phi/backends/cpu/cpu_context.h" #include "paddle/phi/core/kernel_registry.h" #include "paddle/phi/kernels/funcs/eigen/common.h" #include "paddle/phi/kernels/funcs/math_function.h" namespace phi { template static void getKthvalue(Type input_height, Type input_width, int input_dim, const DenseTensor* input, T* t_out, Type* t_indices, const int& k) { bool partial_sort_flag = (k * 64) < input_width; #ifdef PADDLE_WITH_MKLML #pragma omp parallel for #endif for (Type i = 0; i < input_height; ++i) { std::vector> col_vec; col_vec.reserve(input_width); if (input_dim == 1) { auto e_input = EigenVector::Flatten(*input); for (Type j = 0; j < input_width; ++j) { col_vec.emplace_back(std::pair(e_input(j), j)); } } else { auto e_input = EigenMatrix::Reshape(*input, input_dim - 1); for (Type j = 0; j < input_width; ++j) { col_vec.emplace_back(std::pair(e_input(i, j), j)); } } if (partial_sort_flag) { std::partial_sort( col_vec.begin(), col_vec.begin() + k, col_vec.end(), [](const std::pair& l, const std::pair& r) { return (!std::isnan(static_cast(l.first)) && std::isnan(static_cast(r.first))) || (l.first < r.first); }); } else { std::nth_element( col_vec.begin(), col_vec.begin() + k - 1, col_vec.end(), [](const std::pair& l, const std::pair& r) { return (!std::isnan(static_cast(l.first)) && std::isnan(static_cast(r.first))) || (l.first < r.first); }); } t_out[i] = col_vec[k - 1].first; t_indices[i] = col_vec[k - 1].second; } } template void KthvalueKernel(const Context& dev_ctx, const DenseTensor& x, int k, int axis, bool keepdim, DenseTensor* output, DenseTensor* indices) { const auto& in_dims = x.dims(); if (axis < 0) axis += in_dims.size(); T* output_data = dev_ctx.template Alloc(output); int64_t* indices_data = dev_ctx.template Alloc(indices); auto out_dims = output->dims(); if (axis == in_dims.size() - 1) { const int64_t& input_height = phi::product(phi::slice_ddim(in_dims, 0, in_dims.size() - 1)); const int64_t& input_width = in_dims[in_dims.size() - 1]; getKthvalue(input_height, input_width, in_dims.size(), &x, output_data, indices_data, k); } else { std::vector trans; for (int i = 0; i < axis; i++) { trans.emplace_back(i); } trans.emplace_back(in_dims.size() - 1); for (int i = axis + 1; i < in_dims.size() - 1; i++) { trans.emplace_back(i); } trans.emplace_back(axis); if (!keepdim) { std::vector tmp_out_shape; for (int i = 0; i < axis; i++) { tmp_out_shape.emplace_back(in_dims[i]); } tmp_out_shape.emplace_back(1); for (int i = axis + 1; i < in_dims.size(); i++) { tmp_out_shape.emplace_back(in_dims[i]); } DDim tmp_out_dims = phi::make_ddim(tmp_out_shape); output->Resize(tmp_out_dims); indices->Resize(tmp_out_dims); } DDim trans_dims(in_dims); DDim trans_out_dims(in_dims); for (size_t i = 0; i < trans.size(); i++) { trans_dims[i] = in_dims[trans[i]]; trans_out_dims[i] = in_dims[trans[i]]; } trans_out_dims[in_dims.size() - 1] = 1; DenseTensor trans_inp; trans_inp.Resize(trans_dims); dev_ctx.template Alloc(&trans_inp); int ndims = trans.size(); funcs::TransCompute( ndims, dev_ctx, x, &trans_inp, trans); const int64_t input_height = phi::product(phi::slice_ddim(trans_dims, 0, trans_dims.size() - 1)); const int64_t input_width = trans_dims[trans_dims.size() - 1]; DenseTensor tmp_out, tmp_indices; tmp_out.Resize(trans_out_dims); T* t_out = dev_ctx.template Alloc(&tmp_out); tmp_indices.Resize(trans_out_dims); int64_t* t_ind = dev_ctx.template Alloc(&tmp_indices); getKthvalue( input_height, input_width, in_dims.size(), &trans_inp, t_out, t_ind, k); funcs::TransCompute( ndims, dev_ctx, tmp_indices, indices, trans); funcs::TransCompute( ndims, dev_ctx, tmp_out, output, trans); if (!keepdim) { output->Resize(out_dims); indices->Resize(out_dims); } } } } // namespace phi PD_REGISTER_KERNEL(kthvalue, CPU, ALL_LAYOUT, phi::KthvalueKernel, float, double, int, int64_t) {}