// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved. // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. #include "paddle/phi/kernels/log_softmax_grad_kernel.h" #include "paddle/phi/backends/xpu/enforce_xpu.h" #include "paddle/phi/core/kernel_registry.h" #include "paddle/phi/kernels/funcs/axis_utils.h" namespace phi { template void LogSoftmaxGradKernel(const Context& dev_ctx, const DenseTensor& out, const DenseTensor& out_grad, int axis, DenseTensor* x_grad) { const int rank = out.dims().size(); axis = funcs::CanonicalAxis(axis, rank); if (out.numel() != 0) { auto out_shape = phi::vectorize(out.dims()); dev_ctx.template Alloc(x_grad); xpu::ctx_guard RAII_GUARD(dev_ctx.x_context()); T* tmp_ptr = RAII_GUARD.alloc_l3_or_gm(out_grad.numel()); T* tmp2_ptr = RAII_GUARD.alloc_l3_or_gm(out_grad.numel()); PADDLE_ENFORCE_NE( tmp_ptr, nullptr, phi::errors::External("no enough memory in xpu")); PADDLE_ENFORCE_NE( tmp2_ptr, nullptr, phi::errors::External("no enough memory in xpu")); int r = xpu::exp(dev_ctx.x_context(), out.data(), tmp_ptr, out_grad.numel()); PADDLE_ENFORCE_XDNN_SUCCESS(r, "exp"); r = xpu::reciprocal( dev_ctx.x_context(), tmp_ptr, tmp2_ptr, out_grad.numel()); PADDLE_ENFORCE_XDNN_SUCCESS(r, "reciprocal"); r = xpu::mul(dev_ctx.x_context(), tmp2_ptr, out_grad.data(), tmp2_ptr, out_grad.numel()); PADDLE_ENFORCE_XDNN_SUCCESS(r, "mul"); r = xpu::softmax_grad(dev_ctx.x_context(), tmp_ptr, tmp2_ptr, x_grad->data(), out_shape, axis); PADDLE_ENFORCE_XDNN_SUCCESS(r, "softmax_grad"); } } } // namespace phi PD_REGISTER_KERNEL( log_softmax_grad, XPU, ALL_LAYOUT, phi::LogSoftmaxGradKernel, float) {}