/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. */ #include "paddle/fluid/operators/benchmark/op_tester.h" #include #include "gflags/gflags.h" #include "gtest/gtest.h" #include "paddle/fluid/framework/op_info.h" #include "paddle/fluid/framework/op_registry.h" #include "paddle/fluid/framework/variable_helper.h" #include "paddle/fluid/platform/init.h" #include "paddle/fluid/platform/profiler.h" #include "paddle/fluid/platform/timer.h" #include "paddle/fluid/pybind/pybind.h" namespace paddle { namespace operators { namespace benchmark { DEFINE_string(op_config_list, "", "Path of op config file."); DEFINE_int32(specified_config_id, -1, "Test the specified op config."); void OpTester::Init(const std::string &filename) { Init(OpTesterConfig(filename)); } void OpTester::Init(const OpTesterConfig &config) { config_ = config; auto &op_desc_info = framework::OpInfoMap::Instance(); // Initialize the OpDesc if (op_desc_info.Has(config_.op_type)) { type_ = config_.op_type; op_desc_.SetType(config_.op_type); CreateInputVarDesc(); CreateOutputVarDesc(); } else { LOG(FATAL) << "Op \"" << config_.op_type << "\" is not registered."; } if (config_.device_id >= 0) { place_ = paddle::platform::CUDAPlace(config_.device_id); } else { place_ = paddle::platform::CPUPlace(); } framework::InitDevices(false); scope_.reset(new paddle::framework::Scope()); op_ = framework::OpRegistry::CreateOp(op_desc_); CreateVariables(scope_.get()); } void OpTester::Run() { if (config_.print_debug_string) { LOG(INFO) << DebugString(); } // Warm up RunImpl(); platform::Timer timer; if (config_.profile) { if (platform::is_cpu_place(place_)) { platform::EnableProfiler(platform::ProfilerState::kCPU); } else { #ifdef PADDLE_WITH_CUDA platform::EnableProfiler(platform::ProfilerState::kAll); platform::SetDeviceId(config_.device_id); #else PADDLE_THROW("'CUDAPlace' is not supported in CPU only device."); #endif } timer.Start(); for (int i = config_.repeat; i > 0; --i) { RunImpl(); } timer.Pause(); platform::DisableProfiler(platform::EventSortingKey::kDefault, "op_tester_profiler"); } else { timer.Start(); for (int i = config_.repeat; i > 0; --i) { RunImpl(); } timer.Pause(); } config_.runtime = timer.ElapsedMS() / config_.repeat; LOG(INFO) << "=== Run " << config_.repeat << " times, latency: " << config_.runtime << " ms ==="; } void OpTester::RunImpl() { op_->Run(*scope_, place_); platform::DeviceContextPool::Instance().Get(place_)->Wait(); scope_->DropKids(); } std::vector OpTester::GetOpProtoInputNames() { std::vector input_names; const framework::proto::OpProto &proto = framework::OpInfoMap::Instance().Get(type_).Proto(); for (int i = 0; i != proto.inputs_size(); ++i) { const auto &input = proto.inputs(i); input_names.push_back(input.name()); } return input_names; } std::vector OpTester::GetOpProtoOutputNames() { std::vector output_names; const framework::proto::OpProto &proto = framework::OpInfoMap::Instance().Get(type_).Proto(); for (int i = 0; i != proto.outputs_size(); ++i) { const auto &output = proto.outputs(i); output_names.push_back(output.name()); } return output_names; } void OpTester::CreateInputVarDesc() { std::vector input_names = GetOpProtoInputNames(); for (auto &name : input_names) { const OpInputConfig *input = config_.GetInput(name); if (input == nullptr) { LOG(FATAL) << "The input " << name << " of op " << config_.op_type << " is not correctlly provided."; } std::string var_name = config_.op_type + "." + name; framework::VarDesc *var = Var(var_name); // Need to support more type var->SetType(framework::proto::VarType::LOD_TENSOR); var->SetPersistable(false); var->SetDataType(framework::proto::VarType::FP32); var->SetShape(input->dims); op_desc_.SetInput(name, {var_name}); input_lods_[var_name] = input->lod; } } void OpTester::CreateOutputVarDesc() { std::vector output_names = GetOpProtoOutputNames(); for (auto &name : output_names) { std::string var_name = config_.op_type + "." + name; framework::VarDesc *var = Var(var_name); // Need to support more type var->SetType(framework::proto::VarType::LOD_TENSOR); var->SetPersistable(false); var->SetDataType(framework::proto::VarType::FP32); op_desc_.SetOutput(name, {var_name}); } } framework::VarDesc *OpTester::Var(const std::string &name) { auto it = vars_.find(name); if (it != vars_.end()) { return it->second.get(); } auto *var = new framework::VarDesc(name); vars_[name].reset(var); return var; } template void OpTester::SetupTensor(framework::LoDTensor *tensor, const std::vector &shape, T lower, T upper) { static unsigned int seed = 100; std::mt19937 rng(seed++); std::uniform_real_distribution uniform_dist(0, 1); T *ptr = tensor->mutable_data(framework::make_ddim(shape), place_); if (platform::is_cpu_place(place_)) { for (int i = 0; i < tensor->numel(); ++i) { ptr[i] = static_cast(uniform_dist(rng) * (upper - lower) + lower); } } else { framework::LoDTensor cpu_tensor; T *cpu_ptr = cpu_tensor.mutable_data(framework::make_ddim(shape), platform::CPUPlace()); for (int i = 0; i < cpu_tensor.numel(); ++i) { cpu_ptr[i] = static_cast(uniform_dist(rng) * (upper - lower) + lower); } TensorCopySync(cpu_tensor, place_, tensor); } } void OpTester::CreateVariables(framework::Scope *scope) { for (auto &item : vars_) { auto &var = item.second; if (var->Name() == framework::kEmptyVarName) { continue; } auto *ptr = scope->Var(var->Name()); framework::InitializeVariable(ptr, var->GetType()); if (var->Persistable()) { VLOG(3) << "Create Variable " << var->Name() << " global, which pointer is " << ptr; } else { VLOG(3) << "Create Variable " << var->Name() << " locally, which pointer is " << ptr; } } for (auto &item : input_lods_) { // Allocate memory for input tensor auto &var_name = item.first; VLOG(3) << "Allocate memory for tensor " << var_name; auto &var_desc = vars_[var_name]; std::vector shape = var_desc->GetShape(); auto *var = scope->Var(var_name); auto *tensor = var->GetMutable(); SetupTensor(tensor, shape, static_cast(0.0), static_cast(1.0)); VLOG(3) << "Set lod for tensor " << var_name; std::vector> &lod_vec = item.second; framework::LoD lod; for (size_t i = 0; i < lod_vec.size(); ++i) { lod.push_back(lod_vec[i]); } tensor->set_lod(lod); } } static std::string GenSpaces(int count) { std::stringstream ss; for (int i = 0; i < count; ++i) { ss << " "; } return ss.str(); } std::string OpTester::DebugString() { std::stringstream ss; int count = 0; for (auto &item : vars_) { auto &var = item.second; ss << GenSpaces(count++) << "vars {\n"; ss << GenSpaces(count) << "name: \"" << var->Name() << "\"\n"; ss << GenSpaces(count++) << "type: {\n"; ss << GenSpaces(count) << "type: LOD_TENSOR\n"; ss << GenSpaces(count++) << "lod_tensor {\n"; ss << GenSpaces(count++) << "tensor {\n"; ss << GenSpaces(count) << "data_type: FP32\n"; std::vector shape = var->GetShape(); for (auto d : shape) { ss << GenSpaces(count) << "dims: " << d << "\n"; } ss << GenSpaces(--count) << "}\n"; ss << GenSpaces(--count) << "}\n"; ss << GenSpaces(--count) << "}\n"; ss << GenSpaces(count) << "persistable: " << var->Persistable() << "\n"; ss << GenSpaces(--count) << "}\n"; } ss << GenSpaces(count++) << "ops {\n"; for (auto &name : op_desc_.InputNames()) { ss << GenSpaces(count++) << "inputs {\n"; ss << GenSpaces(count) << "parameters: \"" << name << "\"\n"; ss << GenSpaces(count) << "arguments: \"" << op_desc_.Input(name)[0] << "\"\n"; ss << GenSpaces(--count) << "}\n"; } for (auto &name : op_desc_.OutputNames()) { ss << GenSpaces(count++) << "outputs {\n"; ss << GenSpaces(count) << "parameters: \"" << name << "\"\n"; ss << GenSpaces(count) << "arguments: \"" << op_desc_.Output(name)[0] << "\"\n"; ss << GenSpaces(--count) << "}\n"; } ss << GenSpaces(count) << "type: " << op_desc_.Type() << "\n"; ss << GenSpaces(--count) << "}\n"; return ss.str(); } TEST(op_tester, base) { if (!FLAGS_op_config_list.empty()) { std::ifstream fin(FLAGS_op_config_list, std::ios::in | std::ios::binary); PADDLE_ENFORCE(static_cast(fin), "Cannot open file %s", FLAGS_op_config_list.c_str()); std::vector op_configs; while (!fin.eof()) { OpTesterConfig config; bool result = config.Init(fin); if (result) { op_configs.push_back(config); } } if (FLAGS_specified_config_id >= 0 && FLAGS_specified_config_id < static_cast(op_configs.size())) { OpTester tester; tester.Init(op_configs[FLAGS_specified_config_id]); tester.Run(); } else { for (size_t i = 0; i < op_configs.size(); ++i) { OpTester tester; tester.Init(op_configs[i]); tester.Run(); } } } else { OpTester tester; OpTesterConfig config; config.op_type = "elementwise_add"; config.inputs.resize(2); config.inputs[0].name = "X"; config.inputs[0].dims = {64, 64}; config.inputs[1].name = "Y"; config.inputs[1].dims = {64, 1}; tester.Init(config); tester.Run(); } } } // namespace benchmark } // namespace operators } // namespace paddle