/* Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. */ #include "paddle/fluid/distributed/service/brpc_utils.h" #include #include #include "paddle/fluid/platform/enforce.h" #include "paddle/fluid/platform/profiler.h" namespace paddle { namespace framework { class Scope; class Variable; } // namespace framework namespace platform { class DeviceContext; } // namespace platform } // namespace paddle namespace paddle { namespace distributed { framework::proto::VarType::Type VarMessageToVarType( VariableMessage::Type type) { switch (type) { case VariableMessage::FP32: return framework::proto::VarType::FP32; // NOLINT case VariableMessage::FP64: return framework::proto::VarType::FP64; // NOLINT case VariableMessage::INT32: return framework::proto::VarType::INT32; // NOLINT case VariableMessage::INT64: return framework::proto::VarType::INT64; // NOLINT case VariableMessage::BOOL: return framework::proto::VarType::BOOL; // NOLINT default: PADDLE_THROW(platform::errors::InvalidArgument( "VarMessageToVarType:Unsupported type %d", type)); } } void SerializeToMultiVarMsgAndIOBuf( const std::string& message_name, const std::vector& send_var_name_val, const std::vector& recv_var_name_val, const platform::DeviceContext& ctx, const framework::Scope* scope, MultiVarMsg* request, butil::IOBuf* iobuf) { // 1. message_name request->set_message_name(message_name); // 2. var_names for (auto& send_var_name : send_var_name_val) { request->add_send_var_names(send_var_name); } for (auto& recv_var_name : recv_var_name_val) { request->add_recv_var_names(recv_var_name); } // 3. VarMessage for (auto& send_var_name : send_var_name_val) { auto* send_var_msg = request->add_var_messages(); butil::IOBuf temp_iobuf; send_var_msg->set_varname(send_var_name); framework::Variable* var = scope->FindVar(send_var_name); if (var->IsType()) { SerializeLodTensor(var, ctx, send_var_msg, &temp_iobuf); } else if (var->IsType()) { SerializeSelectedRows(var, ctx, send_var_msg, &temp_iobuf); } iobuf->append(temp_iobuf); } } void SerializeLodTensor(framework::Variable* var, const platform::DeviceContext& ctx, VarMsg* var_msg, butil::IOBuf* iobuf) { auto* tensor = var->GetMutable(); var_msg->set_type(::paddle::LOD_TENSOR); const framework::LoD lod = tensor->lod(); if (lod.size() > 0) { var_msg->set_lod_level(lod.size()); for (auto& each : lod) { VarMsg::LodData* lod_inner = var_msg->add_lod(); for (auto& d : each) { lod_inner->add_lod_data(d); } } } var_msg->set_data_type(static_cast(tensor->type())); for (auto& dim : framework::vectorize(tensor->dims())) { var_msg->add_dims(dim); } // IO Buffer if (platform::is_cpu_place(tensor->place())) { auto data_len = tensor->numel() * framework::SizeOfType(tensor->type()); iobuf->append(reinterpret_cast(&data_len), 8); iobuf->append(reinterpret_cast(tensor->data()), data_len); } else { #ifdef PADDLE_WITH_CUDA char* temp_ptr = new char[tensor->numel() * framework::SizeOfType(tensor->type())]; auto stream = reinterpret_cast(ctx).stream(); memory::Copy(platform::CPUPlace(), temp_ptr, BOOST_GET_CONST(platform::CUDAPlace, tensor->place()), tensor->data(), tensor->numel() * framework::SizeOfType(tensor->type()), stream); auto data_len = tensor->numel() * framework::SizeOfType(tensor->type()); iobuf->append(reinterpret_cast(&data_len), 8); iobuf->append(reinterpret_cast(temp_ptr), data_len); delete[] temp_ptr; #endif } } void SerializeSelectedRows(framework::Variable* var, const platform::DeviceContext& ctx, VarMsg* var_msg, butil::IOBuf* iobuf) { framework::SelectedRows* slr = var->GetMutable(); auto* tensor = slr->mutable_value(); auto* rows = slr->mutable_rows(); var_msg->set_type(::paddle::SELECTED_ROWS); var_msg->set_slr_height(slr->height()); auto* var_data = var_msg->mutable_data(); var_data->clear(); var_data->resize(rows->size() * sizeof(int64_t)); char* data_ptr = const_cast(var_data->data()); if (platform::is_cpu_place(tensor->place())) { memcpy(data_ptr, &(*rows)[0], rows->size() * sizeof(int64_t)); } else { #ifdef PADDLE_WITH_CUDA auto stream = reinterpret_cast(ctx).stream(); memory::Copy(platform::CPUPlace(), data_ptr, BOOST_GET_CONST(platform::CUDAPlace, tensor->place()), &(*rows)[0], rows->size() * sizeof(int64_t), stream); #endif } var_msg->set_data_type(static_cast(tensor->type())); for (auto& dim : framework::vectorize(tensor->dims())) { var_msg->add_dims(dim); } // IO Buffer if (platform::is_cpu_place(tensor->place())) { auto data_len = tensor->numel() * framework::SizeOfType(tensor->type()); iobuf->append(reinterpret_cast(&data_len), 8); iobuf->append(reinterpret_cast(tensor->data()), data_len); } else { #ifdef PADDLE_WITH_CUDA char* temp_ptr = new char[tensor->numel() * framework::SizeOfType(tensor->type())]; auto stream = reinterpret_cast(ctx).stream(); memory::Copy(platform::CPUPlace(), temp_ptr, BOOST_GET_CONST(platform::CUDAPlace, tensor->place()), tensor->data(), tensor->numel() * framework::SizeOfType(tensor->type()), stream); auto data_len = tensor->numel() * framework::SizeOfType(tensor->type()); iobuf->append(reinterpret_cast(&data_len), 8); iobuf->append(reinterpret_cast(temp_ptr), data_len); delete[] temp_ptr; #endif } } void DeserializeFromMultiVarMsgAndIOBuf(const MultiVarMsg& multi_msg, const butil::IOBuf* iobuf, const platform::DeviceContext& ctx, framework::Scope* scope) { butil::IOBufBytesIterator io_buffer_itr(*iobuf); // size_t shard_buffer_remain = res_io_buffer.size(); for (int recv_var_index = 0; recv_var_index < multi_msg.send_var_names_size(); ++recv_var_index) { const auto& msg = multi_msg.var_messages(recv_var_index); auto* var = scope->Var(msg.varname()); if (msg.type() == ::paddle::LOD_TENSOR) { DeserializeLodTensor(var, msg, io_buffer_itr, ctx); } else if (msg.type() == ::paddle::SELECTED_ROWS) { DeserializeSelectedRows(var, msg, io_buffer_itr, ctx); } } } void DeserializeFromMultiVarMsgAndIOBuf(const MultiVarMsg& multi_msg, const butil::IOBuf* iobuf, const platform::DeviceContext& ctx, const framework::Scope* scope) { butil::IOBufBytesIterator io_buffer_itr(*iobuf); // size_t shard_buffer_remain = res_io_buffer.size(); for (int recv_var_index = 0; recv_var_index < multi_msg.send_var_names_size(); ++recv_var_index) { const auto& msg = multi_msg.var_messages(recv_var_index); auto* var = scope->FindVar(msg.varname()); PADDLE_ENFORCE_NE(var, nullptr, platform::errors::InvalidArgument( "Not find variable %s in scope.", msg.varname())); if (msg.type() == ::paddle::LOD_TENSOR) { DeserializeLodTensor(var, msg, io_buffer_itr, ctx); } else if (msg.type() == ::paddle::SELECTED_ROWS) { DeserializeSelectedRows(var, msg, io_buffer_itr, ctx); } } } void DeserializeLodTensor(framework::Variable* var, const VarMsg& msg, butil::IOBufBytesIterator& io_buffer_itr, const platform::DeviceContext& ctx) { const auto place = ctx.GetPlace(); framework::LoDTensor* tensor = var->GetMutable(); std::vector vec_dim; for (auto& x : msg.dims()) { vec_dim.push_back(x); } tensor->Resize(framework::make_ddim(vec_dim)); framework::LoD lod; for (int i = 0; i < msg.lod_level(); ++i) { framework::Vector v; for (int j = 0; j < msg.lod(i).lod_data_size(); ++j) { v.push_back(msg.lod(i).lod_data(j)); } lod.push_back(v); } tensor->set_lod(lod); void* tensor_data = tensor->mutable_data(place, VarMessageToVarType(msg.data_type())); // IO Buffer if (platform::is_cpu_place(place)) { unsigned long data_len; io_buffer_itr.copy_and_forward((void*)(&data_len), 8); io_buffer_itr.copy_and_forward(tensor_data, data_len); } else if (platform::is_gpu_place(place)) { #ifdef PADDLE_WITH_CUDA unsigned long data_len; char* temp_ptr = new char[tensor->numel() * framework::SizeOfType(tensor->type())]; io_buffer_itr.copy_and_forward((void*)(&data_len), 8); io_buffer_itr.copy_and_forward((void*)temp_ptr, data_len); auto stream = reinterpret_cast(ctx).stream(); memory::Copy(BOOST_GET_CONST(platform::CUDAPlace, place), tensor_data, platform::CPUPlace(), (void*)temp_ptr, tensor->numel() * framework::SizeOfType(tensor->type()), stream); delete[] temp_ptr; #endif } } void DeserializeSelectedRows(framework::Variable* var, const VarMsg& msg, butil::IOBufBytesIterator& io_buffer_itr, const platform::DeviceContext& ctx) { const auto place = ctx.GetPlace(); auto* slr = var->GetMutable(); framework::Tensor* tensor = slr->mutable_value(); slr->set_height(msg.slr_height()); std::vector tmp_rows(msg.slr_height()); memcpy(&tmp_rows[0], msg.data().data(), msg.slr_height() * sizeof(int64_t)); slr->set_rows(tmp_rows); std::vector vec_dim; for (auto& x : msg.dims()) { vec_dim.push_back(x); } tensor->Resize(framework::make_ddim(vec_dim)); void* tensor_data = tensor->mutable_data(place, VarMessageToVarType(msg.data_type())); // IO Buffer if (platform::is_cpu_place(place)) { unsigned long data_len; io_buffer_itr.copy_and_forward((void*)(&data_len), 8); io_buffer_itr.copy_and_forward(tensor_data, data_len); } else if (platform::is_gpu_place(place)) { #ifdef PADDLE_WITH_CUDA char* temp_ptr = new char[tensor->numel() * framework::SizeOfType(tensor->type())]; unsigned long data_len; io_buffer_itr.copy_and_forward((void*)(&data_len), 8); io_buffer_itr.copy_and_forward(temp_ptr, data_len); auto stream = reinterpret_cast(ctx).stream(); memory::Copy(BOOST_GET_CONST(platform::CUDAPlace, place), tensor_data, platform::CPUPlace(), temp_ptr, tensor->numel() * framework::SizeOfType(tensor->type()), stream); delete[] temp_ptr; #endif } } } // namespace distributed } // namespace paddle