/* Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. */ #pragma once #include "paddle/phi/core/dense_tensor.h" #include "paddle/phi/infermeta/binary.h" #include "paddle/phi/infermeta/unary.h" #include "paddle/phi/kernels/empty_kernel.h" namespace phi { template void MeanRawKernel(const Context& dev_ctx, const DenseTensor& x, const std::vector& dims, bool keep_dim, bool reduce_all, DenseTensor* out); template void MeanKernel(const Context& dev_ctx, const DenseTensor& x, const std::vector& dims, bool keep_dim, DenseTensor* out); template void SumRawKernel(const Context& dev_ctx, const DenseTensor& x, const std::vector& dims, bool keep_dim, bool reduce_all, DataType out_dtype, DenseTensor* out); template void SumKernel(const Context& dev_ctx, const DenseTensor& x, const std::vector& dims, DataType out_dtype, bool keep_dim, DenseTensor* out); template void AddRawKernel(const Context& dev_ctx, const DenseTensor& x, const DenseTensor& y, int axis, DenseTensor* out); template void AddKernel(const Context& dev_ctx, const DenseTensor& x, const DenseTensor& y, DenseTensor* out); template void SubtractRawKernel(const Context& dev_ctx, const DenseTensor& x, const DenseTensor& y, int axis, DenseTensor* out); template void SubtractKernel(const Context& dev_ctx, const DenseTensor& x, const DenseTensor& y, DenseTensor* out); template void DivideRawKernel(const Context& dev_ctx, const DenseTensor& x, const DenseTensor& y, int axis, DenseTensor* out); template void DivideKernel(const Context& dev_ctx, const DenseTensor& x, const DenseTensor& y, DenseTensor* out); template void MultiplyRawKernel(const Context& dev_ctx, const DenseTensor& x, const DenseTensor& y, int axis, DenseTensor* out); template void MultiplyKernel(const Context& dev_ctx, const DenseTensor& x, const DenseTensor& y, DenseTensor* out); template DenseTensor Add(const Context& dev_ctx, const DenseTensor& x, const DenseTensor& y) { auto dense_out = phi::Empty(dev_ctx); MetaTensor meta_out(&dense_out); ElementwiseInferMeta(x, y, &meta_out); AddKernel(dev_ctx, x, y, &dense_out); return dense_out; } template DenseTensor Subtract(const Context& dev_ctx, const DenseTensor& x, const DenseTensor& y) { auto dense_out = phi::Empty(dev_ctx); MetaTensor meta_out(&dense_out); ElementwiseInferMeta(x, y, &meta_out); SubtractKernel(dev_ctx, x, y, &dense_out); return dense_out; } template DenseTensor Divide(const Context& dev_ctx, const DenseTensor& x, const DenseTensor& y) { auto dense_out = phi::Empty(dev_ctx); MetaTensor meta_out(&dense_out); ElementwiseInferMeta(x, y, &meta_out); DivideKernel(dev_ctx, x, y, &dense_out); return dense_out; } template DenseTensor Multiply(const Context& dev_ctx, const DenseTensor& x, const DenseTensor& y) { auto dense_out = phi::Empty(dev_ctx); MetaTensor meta_out(&dense_out); ElementwiseInferMeta(x, y, &meta_out); MultiplyKernel(dev_ctx, x, y, &dense_out); return dense_out; } template DenseTensor Mean(const Context& dev_ctx, const DenseTensor& x, const std::vector& axis, bool keep_dim) { auto dense_out = phi::Empty(dev_ctx); MetaTensor meta_out(&dense_out); ReduceInferMetaBase(x, axis, keep_dim, false, x.dtype(), &meta_out); MeanKernel(dev_ctx, x, axis, keep_dim, &dense_out); return dense_out; } template DenseTensor Sum(const Context& dev_ctx, const DenseTensor& x, const std::vector& axis, DataType dtype, bool keep_dim) { auto dense_out = phi::Empty(dev_ctx); MetaTensor meta_out(&dense_out); SumInferMeta(x, axis, dtype, keep_dim, &meta_out); SumKernel(dev_ctx, x, axis, dtype, keep_dim, &dense_out); return dense_out; } } // namespace phi