/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. */ #pragma once #include #ifdef PADDLE_WITH_PSLIB #include #include #endif #include #include #include #include #include #include #include "paddle/fluid/framework/program_desc.h" #include "paddle/fluid/framework/scope.h" #include "paddle/fluid/framework/variable_helper.h" #include "paddle/fluid/platform/macros.h" // for DISABLE_COPY_AND_ASSIGN namespace paddle { namespace framework { // A wrapper class for pslib.h, this class follows Singleton pattern // i.e. only initialized once in the current process // Example: // std::shared_ptr fleet_ptr = // FleetWrapper::GetInstance(); // string dist_desc; // fleet_ptr->InitServer(dist_desc, 0); // interface design principles: // Pull // Sync: PullSparseVarsSync // Async: PullSparseVarsAsync(not implemented currently) // Push // Sync: PushSparseVarsSync // Async: PushSparseVarsAsync(not implemented currently) // Async: PushSparseVarsWithLabelAsync(with special usage) // Push dense variables to server in Async mode // Param: scope, table_id, var_names // Param: push_sparse_status class FleetWrapper { public: virtual ~FleetWrapper() {} FleetWrapper() { scale_sparse_gradient_with_batch_size_ = true; } // Pull sparse variables from server in Sync mode // Param: scope, table_id, var_names, fea_keys // Param: fea_values void PullSparseVarsSync(const Scope& scope, const uint64_t table_id, const std::vector& var_names, std::vector* fea_keys, std::vector>* fea_values, int fea_dim); void PullDenseVarsSync(const Scope& scope, const uint64_t table_id, const std::vector& var_names); void PullDenseVarsAsync( const Scope& scope, const uint64_t table_id, const std::vector& var_names, std::vector<::std::future>* pull_dense_status); void PushDenseParamSync(const Scope& scope, const uint64_t table_id, const std::vector& var_names); // Push dense variables to server in async mode // Param: scope, table_id, var_names, // Param: push_sparse_status void PushDenseVarsAsync( const Scope& scope, const uint64_t table_id, const std::vector& var_names, std::vector<::std::future>* push_sparse_status); void PushDenseVarsSync(Scope* scope, const uint64_t table_id, const std::vector& var_names); // Push sparse variables with labels to server in Async mode // This is specially designed for click/show stats in server // Param: scope, table_id, var_grad_names, // fea_keys, fea_labels, sparse_grad_names // Param: push_values, push_sparse_status void PushSparseVarsWithLabelAsync( const Scope& scope, const uint64_t table_id, const std::vector& fea_keys, const std::vector& fea_labels, const std::vector& sparse_key_names, const std::vector& sparse_grad_names, const int emb_dim, std::vector>* push_values, std::vector<::std::future>* push_sparse_status, const int batch_size, const bool use_cvm, const bool dump_slot); // Push sparse variables to server in Async mode // Param: scope, table_id, fea_keys, sparse_grad_names // Param: push_values, push_sparse_status /* void PushSparseVarsAsync( const Scope& scope, const uint64_t table_id, const std::vector& fea_keys, const std::vector& sparse_grad_names, std::vector>* push_values, std::vector<::std::future>* push_sparse_status); */ void InitServer(const std::string& dist_desc, int index); void InitWorker(const std::string& dist_desc, const std::vector& host_sign_list, int node_num, int index); void StopServer(); uint64_t RunServer(); void GatherServers(const std::vector& host_sign_list, int node_num); // gather client ip void GatherClients(const std::vector& host_sign_list); // get client info std::vector GetClientsInfo(); // create client to client connection void CreateClient2ClientConnection(); // flush all push requests void ClientFlush(); // load from paddle model void LoadFromPaddleModel(Scope& scope, const uint64_t table_id, // NOLINT std::vector var_list, std::string model_path, std::string model_proto_file, bool load_combine); // mode = 0, load all feature // mode = 1, laod delta feature, which means load diff void LoadModel(const std::string& path, const int mode); // mode = 0, load all feature // mode = 1, laod delta feature, which means load diff void LoadModelOneTable(const uint64_t table_id, const std::string& path, const int mode); // mode = 0, save all feature // mode = 1, save delta feature, which means save diff void SaveModel(const std::string& path, const int mode); void ShrinkSparseTable(int table_id); void ShrinkDenseTable(int table_id, Scope* scope, std::vector var_list, float decay); // register client to client communication typedef std::function MsgHandlerFunc; int RegisterClientToClientMsgHandler(int msg_type, MsgHandlerFunc handler); // send client to client message std::future SendClientToClientMsg(int msg_type, int to_client_id, const std::string& msg); template void Serialize(const std::vector& t, std::string* str); template void Deserialize(std::vector* t, const std::string& str); static std::shared_ptr GetInstance() { if (NULL == s_instance_) { s_instance_.reset(new paddle::framework::FleetWrapper()); } return s_instance_; } // this performs better than rand_r, especially large data std::default_random_engine& LocalRandomEngine(); #ifdef PADDLE_WITH_PSLIB static std::shared_ptr pslib_ptr_; #endif private: static std::shared_ptr s_instance_; #ifdef PADDLE_WITH_PSLIB std::map> _regions; #endif protected: static bool is_initialized_; bool scale_sparse_gradient_with_batch_size_; DISABLE_COPY_AND_ASSIGN(FleetWrapper); }; } // end namespace framework } // end namespace paddle