/* Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. */ #pragma once #include "paddle/fluid/framework/op_registry.h" #include "paddle/fluid/operators/lu_op.h" #include "paddle/fluid/operators/tril_triu_op.h" namespace paddle { namespace operators { using Tensor = framework::Tensor; using LoDTensorArray = framework::LoDTensorArray; template class LU_UnpackKernel : public framework::OpKernel { public: void Compute(const paddle::framework::ExecutionContext& ctx) const override { auto xin = ctx.Input("X"); auto P = ctx.Input("Pivots"); auto ltensor = ctx.Output("L"); auto utensor = ctx.Output("U"); auto ptensor = ctx.Output("Pmat"); auto unpack_ludata = ctx.Attr("unpack_ludata"); auto unpack_pivots = ctx.Attr("unpack_pivots"); const auto& dev_ctx = ctx.template device_context(); auto xdims = xin->dims(); int xrank = xdims.size(); int64_t m = xdims[xrank - 2]; int64_t n = xdims[xrank - 1]; int64_t k = std::min(m, n); if (unpack_ludata) { ltensor->mutable_data(ctx.GetPlace()); utensor->mutable_data(ctx.GetPlace()); framework::Tensor L, U; LU_Unpack(dev_ctx, xin, &L, &U); if (m >= n) { framework::TensorCopy(L, ctx.GetPlace(), ltensor); Tensor_narrow(ctx, &U, utensor, 0, k, 0, k); } else { framework::TensorCopy(U, ctx.GetPlace(), utensor); Tensor_narrow(ctx, &L, ltensor, 0, k, 0, k); } } if (unpack_pivots) { ptensor->mutable_data(ctx.GetPlace()); Unpack_Pivot(dev_ctx, *P, ptensor, m, k); } } }; template class LU_UnpackGradKernel : public framework::OpKernel { public: void Compute(const framework::ExecutionContext& ctx) const override { auto dl = ctx.Input(framework::GradVarName("L")); auto du = ctx.Input(framework::GradVarName("U")); auto dx = ctx.Output(framework::GradVarName("X")); dx->mutable_data(ctx.GetPlace()); const auto& dev_ctx = ctx.template device_context(); framework::Tensor dl_tril, du_triu; const auto ldims = dl->dims(); dl_tril.Resize(ldims); auto H = ldims[ldims.size() - 2]; auto W = ldims[ldims.size() - 1]; auto L_dataptr = dl_tril.mutable_data(dev_ctx.GetPlace()); platform::ForRange l_for_range(dev_ctx, dl->numel()); TrilTriuCompute tril_computer(dl->data(), -1, true, H, W, L_dataptr); l_for_range(tril_computer); const auto udims = du->dims(); du_triu.Resize(udims); H = udims[udims.size() - 2]; W = udims[udims.size() - 1]; auto U_dataptr = du_triu.mutable_data(dev_ctx.GetPlace()); platform::ForRange u_for_range(dev_ctx, du->numel()); TrilTriuCompute triu_computer(du->data(), 0, false, H, W, U_dataptr); u_for_range(triu_computer); auto xdims = dx->dims(); int xrank = xdims.size(); int64_t m = xdims[xrank - 2]; int64_t n = xdims[xrank - 1]; int64_t k = std::min(m, n); std::vector axes = {xrank - 2, xrank - 1}; std::vector slice_starts(2, 0); std::vector slice_ends(2, 0); auto valuedims = vectorize(xdims); pten::funcs::SetConstant setter; setter(dev_ctx, dx, static_cast(0)); if (m <= n) { slice_starts[0] = 0; slice_starts[1] = 0; slice_ends[0] = k; slice_ends[1] = k; valuedims[xrank - 2] = k; valuedims[xrank - 1] = k; SetValueCompute_dispatch(ctx, dx, &dl_tril, dx, axes, &slice_starts, &slice_ends, valuedims, xrank); Tensor_Add(dev_ctx, *dx, du_triu, dx); } else { slice_starts[0] = 0; slice_starts[1] = 0; slice_ends[0] = k; slice_ends[1] = k; valuedims[xrank - 2] = k; valuedims[xrank - 1] = k; SetValueCompute_dispatch(ctx, dx, &du_triu, dx, axes, &slice_starts, &slice_ends, valuedims, xrank); Tensor_Add(dev_ctx, *dx, dl_tril, dx); } } }; } // namespace operators } // namespace paddle