# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import unittest import numpy as np import paddle import paddle.fluid as fluid from paddle.fluid.framework import _test_eager_guard from paddle.nn import Linear class SimpleImgConvPool(fluid.dygraph.Layer): def __init__( self, num_channels, num_filters, filter_size, pool_size, pool_stride, pool_padding=0, pool_type='max', global_pooling=False, conv_stride=1, conv_padding=0, conv_dilation=1, conv_groups=1, act=None, use_cudnn=False, dtype='float32', param_attr=None, bias_attr=None, ): super().__init__() self._conv2d = paddle.nn.Conv2D( in_channels=num_channels, out_channels=num_filters, kernel_size=filter_size, stride=conv_stride, padding=conv_padding, dilation=conv_dilation, groups=conv_groups, weight_attr=param_attr, bias_attr=bias_attr, ) self._pool2d = paddle.nn.MaxPool2D( kernel_size=pool_size, stride=pool_stride, padding=pool_padding, ) def forward(self, inputs): x = self._conv2d(inputs) x = self._pool2d(x) return x class MNIST(fluid.dygraph.Layer): def __init__(self, dtype="float32"): super().__init__() self._simple_img_conv_pool_1 = SimpleImgConvPool( num_channels=3, num_filters=20, filter_size=5, pool_size=2, pool_stride=2, act="relu", dtype=dtype, use_cudnn=True, ) self._simple_img_conv_pool_2 = SimpleImgConvPool( num_channels=20, num_filters=50, filter_size=5, pool_size=2, pool_stride=2, act="relu", dtype=dtype, use_cudnn=True, ) self.pool_2_shape = 50 * 53 * 53 SIZE = 10 scale = (2.0 / (self.pool_2_shape**2 * SIZE)) ** 0.5 self._linear = Linear( self.pool_2_shape, 10, weight_attr=paddle.ParamAttr( initializer=paddle.nn.initializer.Normal(mean=0.0, std=scale) ), ) def forward(self, inputs, label): x = paddle.nn.functional.relu(self._simple_img_conv_pool_1(inputs)) x = paddle.nn.functional.relu(self._simple_img_conv_pool_2(x)) x = paddle.reshape(x, shape=[-1, self.pool_2_shape]) cost = self._linear(x) cost = paddle.nn.functional.softmax(cost) loss = fluid.layers.cross_entropy(cost, label) avg_loss = paddle.mean(loss) return avg_loss class TestMnist(unittest.TestCase): def func_mnist_fp16(self): if not fluid.is_compiled_with_cuda(): return x = np.random.randn(1, 3, 224, 224).astype("float32") y = np.random.randint(10, size=[1, 1], dtype="int64") with fluid.dygraph.guard(fluid.CUDAPlace(0)): model = MNIST(dtype="float32") x = fluid.dygraph.to_variable(x) y = fluid.dygraph.to_variable(y) # using amp.auto_cast because paddle.nn.Conv2D doesn't suppport setting dtype with paddle.amp.auto_cast(dtype='float16'): loss = model(x, y) print(loss.numpy()) def test_mnist_fp16(self): with _test_eager_guard(): self.func_mnist_fp16() self.func_mnist_fp16() if __name__ == "__main__": unittest.main()